Mercurial > hg > fxanalyse
view FXAnalyse.c @ 256:708de02ef948
Implement limit to frequency adjustment during recenter
author | Daniele Nicolodi <daniele.nicolodi@obspm.fr> |
---|---|
date | Fri, 05 Jun 2015 21:00:54 +0200 |
parents | 67c8ace9d5f6 |
children | 8cbfce046d41 |
line wrap: on
line source
#include <zmq.h> #include <tcpsupp.h> #include <utility.h> #include <ansi_c.h> #include <lowlvlio.h> #include <cvirte.h> #include <userint.h> #include <formatio.h> #include <inifile.h> #include <string.h> #include "FXAnalyse.h" #include "Plot.h" #include "Allan.h" #include "ad9912.h" #include "ad9956.h" #include "muParserDLL.h" #include "utils.h" #include "stat.h" #include "future.h" #include "data-provider.h" #include "sr-data-logger.h" #include "config.h" #include "logging.h" #define FREP_STEP_SIZE 50000.0 #define SPEED_OF_LIGHT 299792458.0 // m/s #define SR_FREQUENCY 429.228293 // THz #define SR_WAVELENGTH (SPEED_OF_LIGHT / SR_FREQUENCY / 1.0e3) // nm #define HG_FREQUENCY 282.143622 // THz #define HG_WAVELENGTH (SPEED_OF_LIGHT / HG_FREQUENCY / 1.0e3) // nm // select which data provider to use #ifdef NDEBUG #define DataProvider KKDataProvider #else #define DataProvider FakeDataProvider #endif // data acquisition status int acquiring; // data queue CmtTSQHandle dataQueue; // data provider thread CmtThreadFunctionID dataProviderThread; // ZMQ void *zmqcontext; void *zmqsocket; // utility function to send data through ZMQ socket framed by an envelope // see "Pub-Sub Message Envelopes" in chapter 2 "Sockets and Patterns" // of "ZMQ The Guide" http://zguide.zeromq.org/page:all#toc49 int zmq_xpub(void *socket, char *envelope, void *data, size_t len) { int r; r = zmq_send(socket, envelope, strlen(envelope), ZMQ_SNDMORE); if (r < 0) return zmq_errno(); r = zmq_send(socket, data, len, 0); if (r < 0) return zmq_errno(); return 0; } struct event ev; double utc; #define Ch1 ev.data[0] #define Ch2 ev.data[1] #define Ch3 ev.data[2] #define Ch4 ev.data[3] double Math1, Math2, Math3, Math4, Math5; double N1, N2, N3; double Ndiv = 8.0; double Sign1 = 1, Sign2 = 1, Sign3 = 1; void *MathParser1, *MathParser2, *MathParser3, *MathParser4, *MathParser5; // panels static int MainPanel; static int CalcNPanel; static int EstimateNPanel; struct adev { Allan_Data allan; double *data; const char *title; double normalization; int control; }; #define ADEV(__channel, __normalization) \ { \ .data = & ## __channel, \ .title = "Adev " #__channel, \ .normalization = __normalization, \ .control = PANEL_ADEV_ ## __channel \ } static int adev_toggle(struct adev *adev) { if (adev->allan.active) Allan_ClosePanel(&(adev->allan)); else Allan_InitPanel(&(adev->allan), adev->title, adev->normalization, MainPanel, adev->control); return adev->allan.active; } static inline void adev_update(struct adev *adev) { if (adev->allan.active) Allan_AddFrequency(&(adev->allan), *(adev->data)); } struct adev adevs[] = { ADEV(Ch1, 1.80e12), ADEV(Ch2, 282.143e12), ADEV(Ch3, 429.228e12), ADEV(Ch4, 275.0e3), ADEV(Math1, 250.0e6), ADEV(Math2, 194.400e12), ADEV(Math3, 282.143e12), ADEV(Math4, 429.228e12), ADEV(Math5, 1.0), { NULL } }; struct plot { Plot_Data plot; double *data; const char *title; double min; double max; int control; }; #define PLOT(__channel, __min, __max) \ { \ .data = & ## __channel, \ .title = "Plot " #__channel, \ .min = __min, \ .max = __max, \ .control = PANEL_PLOT_ ## __channel \ } static int plot_toggle(struct plot *plot) { if (plot->plot.active) Plot_ClosePanel(&(plot->plot)); else Plot_InitPanel(&(plot->plot), plot->title, plot->min, plot->max, MainPanel, plot->control); return plot->plot.active; } static inline void plot_update(struct plot *plot) { if (plot->plot.active) Plot_AddFrequency(&(plot->plot), *(plot->data)); } struct plot plots[] = { PLOT(Ch1, 54.999e6, 55.001e6), PLOT(Ch2, 0.0, 0.0), PLOT(Ch3, 0.0, 0.0), PLOT(Ch4, 0.0, 0.0), PLOT(Math1, 0.0, 0.0), PLOT(Math2, 0.0, 0.0), PLOT(Math3, 0.0, 0.0), PLOT(Math4, 0.0, 0.0), PLOT(Math5, 0.0, 0.0), { NULL } }; struct ad9956 ad9956; struct ad9912 ad9912; static inline int ad9912_set_frequency_w(struct ad9912 *d, unsigned c, double f) { int r = ad9912_set_frequency(d, c, f); if (r) logmessage(ERROR, "ad9912 set frequency channel=%d error=%d", c, -r); return r; } static inline int ad9912_ramp_frequency_w(struct ad9912 *d, unsigned c, double f, double s) { int r = ad9912_ramp_frequency(d, c, f, s); if (r) logmessage(ERROR, "ad9912 ramp frequency channel=%d error=%d", c, -r); return r; } static inline int ad9956_set_sweep_rate_w(struct ad9956 *d, double s) { int r = ad9956_set_sweep_rate(d, s); if (r) logmessage(ERROR, "ad9956 set sweep rate error=%d", -r); return r; } static int ad9956_set_w(struct ad9956 *d, double f, double s) { int r; r = ad9956_sweep_stop(d); if (r) { logmessage(ERROR, "ad9956 sweep stop error=%d", -r); return r; } r = ad9956_set_frequency(d, f); if (r) { logmessage(ERROR, "ad9956 set frequency error=%d", -r); return r; } r = ad9956_set_sweep_rate(d, s); if (r) { logmessage(ERROR, "ad9956 set sweep rate error=%d", -r); return r; } r = ad9956_sweep_start(d); if (r) { logmessage(ERROR, "ad9956 sweep start error=%d", -r); return r; } return 0; } enum { LO, HG, SR, _N_BEATS, }; enum { N_MEASUREMENT_NONE, N_MEASUREMENT_INIT, N_MEASUREMENT_SLOPE, N_MEASUREMENT_ADJUST_FREQ_PLUS, N_MEASUREMENT_FREP_PLUS, N_MEASUREMENT_ADJUST_FREQ_MINUS, N_MEASUREMENT_FREP_MINUS, }; int n_measurement_1 = N_MEASUREMENT_NONE; int n_measurement_2 = N_MEASUREMENT_NONE; int n_measurement_3 = N_MEASUREMENT_NONE; int nobs = 0; int settling = 0; double f0_DDS1 = 110000000.0, f0_DDS2, f0_DDS3, f0_DDS4, df_DDS3; double slope_time_1 = 40.0, integration_time_1 = 40.0, delta_f_lock_1 = 500e3; double slope_time_2 = 40.0, integration_time_2 = 40.0, delta_f_lock_2 = 500e3; double slope_time_3 = 40.0, integration_time_3 = 40.0, delta_f_lock_3 = 500e3; double t1, t2, t3; double f_rep_slope, f_beat_slope; double f_rep_plus, f_rep_minus; double f_beat_plus, f_beat_minus; // Beatnote sign determination is done stepping the repetition rate by // stepping the comb phase-lock offset frequency f_lock generated by // DDS1. A lock frequency step delta_f_lock determines a change in the // repetition rate given by: // // abs(delta_f_rep) = Ndiv * delta_f_lock / N1 // // where Ndiv = 8 and N1 ~= 8 x 10^5 obtaining that // // abs(delta_f_rep) ~= delta_f_lock / 10^5 // // For the determination of the comb locking beatnote sign we detect // the sign of delta_f_rep caused by a positive delta_f_lock. f_rep is // measured should be small enough to do not exceed the 200x PLL // bandwidth but still be clearly identified. // // For the optical beatnotes we detect the sign of delta_f_beat caused // by a positive delta_f_lock thus we need to take into account the // sign of the comb locking beatnote. The optical beatnote frequency // change is given by // // abs(delta_f_beat) = abs(delta_f_rep) * Nx // // where Nx ~= 10^6 obtaining that // // abs(delta_f_beat) ~= delta_f_lock * 10 // // this need to do not exceed the beatnote filters bandwidth. Given // those contraints the following f_lock steps are chosen: double f_lock_step_1 = 10000.0; double f_lock_step_2 = 10.0; double f_lock_step_3 = 10.0; struct beatsign { int measure; // which beatnote sign is being measured double f0_DDS1; // DDS1 frequency before stepping double t0; // measurement start time double f_rep_zero; // repetition rate before stepping double f_beat_zero; // beatnote frequwncy before stepping }; struct beatsign beatsign = { .measure = 0, }; struct stat stat_math1, stat_ch2, stat_ch3; struct rollmean rollmean_ch1, rollmean_ch2, rollmean_ch3, rollmean_ch4; // dedrift enum { DEDRIFT_REFERENCE_MICROWAVE = 0, DEDRIFT_REFERENCE_HG = 1, }; struct dedrift { int enabled; // dedrift enabled int proportional; // enable proportional correction int reference; // reference frequency int sign; // sign of the correction int x2; // double the applied correction int keep_freq; // keep current frequency value when dedrift is disabled int keep_slope; // keep current slope value when dedrift is disabled double f0; // target frequency double fDDS; // DDS center frequency double applied; // currently applied slope double interval; // measurement duration double t0; // beginning of currrent measurement interval double threshold; // maximum allowed frequency change int badcount; // number of bad data points encountered consecutively int badcountmax; // maximum number of consecutive bad data points int safety; // stop slope update when too many consecutive bad data points are detected struct stat stat; // frequency mean and slope }; struct dedrift dedrift = { .enabled = FALSE, .proportional = FALSE, .reference = DEDRIFT_REFERENCE_MICROWAVE, .sign = +1, .x2 = FALSE, .keep_freq = TRUE, .keep_slope = TRUE, .f0 = 0.0, .fDDS = 70e6, .applied = 0.0, .interval = 30.0, .t0 = 0.0, .threshold = 20.0, // corresponding to a relative frequnecy stability of ~1e-13 .badcount = 0, .badcountmax = 10, .safety = TRUE, }; void dedrift_update_enable() { logmsg("dedrift: automatic slope update enabled"); dedrift.enabled = TRUE; dedrift.t0 = utc; stat_zero(&dedrift.stat); dedrift.stat.previous = NaN; } void dedrift_update_disable() { logmsg("dedrift: automatic slope update disabled"); dedrift.enabled = FALSE; stat_zero(&dedrift.stat); if (! dedrift.keep_slope) { dedrift.applied = 0.0; ad9956_set_sweep_rate_w(&ad9956, dedrift.applied); } if (! dedrift.keep_freq) { ad9956_set_w(&ad9956, dedrift.fDDS, dedrift.applied); } SetCtrlVal(MainPanel, PANEL_SLOPE_APPLIED, dedrift.applied); SetCtrlVal(MainPanel, PANEL_SLOPE_MEASURED, dedrift.stat.slope); SetCtrlVal(MainPanel, PANEL_MEASURE_SLOPE, 0); } // Wrapper around stat_accumulate() that updates the statistic only if // the new datapoint `v` is within `threshold` from the data point // considered in the previous update. If the data point fails this // criteria it does not contribute to the collected statistics and the // previous data point is used instead and `count` is incremented by // one. If the data point is accepted `count` is reset to zero. int stat_accumulate_resilient(struct stat *stat, double v, double threshold, int *count) { if (!isnan(stat->previous) && (fabs(v - stat->previous) > threshold)) { // bad data point stat_accumulate(stat, stat->previous); *count += 1; return TRUE; } else { // good data point stat_accumulate(stat, v); *count = 0; return FALSE; } } void dedrift_update(double f) { if (! dedrift.enabled) return; // update measurement stat_accumulate_resilient(&dedrift.stat, f, dedrift.threshold, &dedrift.badcount); if (dedrift.badcount) { // bad data point detected logmsg("dedrift: bad data point detected"); // too many consecutive bad data points detected if (dedrift.safety && (dedrift.badcount > dedrift.badcountmax)) { logmsg("dedrift: maximum number of consecutive bad data points exceeded"); dedrift_update_disable(); } } // check if the previous check disabled slope update if (! dedrift.enabled) return; // update display SetCtrlVal(MainPanel, PANEL_SLOPE_MEASURED, dedrift.stat.slope); // update applied slope if ((utc - dedrift.t0) > dedrift.interval) { // target frequency if (dedrift.f0 == 0.0) dedrift.f0 = dedrift.stat.mean; // compute correction double dt = utc - dedrift.t0; double corr = dedrift.stat.slope \ + dedrift.proportional * ((dedrift.stat.mean - dedrift.f0) / dt + 0.5 * dedrift.stat.slope); // update dedrift.applied += dedrift.sign * corr * (dedrift.x2 ? 2 : 1); ad9956_set_sweep_rate_w(&ad9956, dedrift.applied); SetCtrlVal(MainPanel, PANEL_SLOPE_APPLIED, dedrift.applied); logmsg("dedrift: update correction=%+3e slope=%+3e", corr, dedrift.applied); // start over. keep track of the last updated data point to // avoid gaps in the detectrion of bad data points based on // threshold on the difference between current data point and // previous one double prev = dedrift.stat.previous; stat_zero(&dedrift.stat); dedrift.stat.previous = prev; dedrift.t0 = utc; } } // recenter struct recenter { int active; // recenter enabled int enabled[_N_BEATS]; // which beatnotes to recenter double threshold[_N_BEATS]; // maximum frequency correction double interval; // interval double t0; // beginning of current interval }; struct recenter recenter = { .active = FALSE, .enabled = { FALSE, FALSE, FALSE }, .threshold = { 10.0, 2000.0, 2000.0 }, .interval = 1800.0, .t0 = 0.0 }; int recenter_enabled() { if (! recenter.active) return FALSE; for (int i = 0; i < _N_BEATS; i++) if (recenter.enabled[i]) return TRUE; return FALSE; } void recenter_update() { if (! recenter_enabled()) return; rollmean_accumulate(&rollmean_ch2, Ch2); rollmean_accumulate(&rollmean_ch3, Ch3); rollmean_accumulate(&rollmean_ch4, Ch4); if ((utc - recenter.t0) > recenter.interval) { if (recenter.enabled[LO]) { // adjust DDS2 frequency to keep Ch4 reading at 275 kHz double freq = ad9912.frequency[1]; double adj = 275000.0 - rollmean_ch4.mean; if (fabs(adj) > recenter.threshold[LO]) { logmessage(WARNING, "not recenter ch4 to 275 kHz: DDS2 adjustment=%+3e exceeds threshold", adj); } else { freq = freq + adj; ad9912_set_frequency_w(&ad9912, 1, freq); SetCtrlVal(MainPanel, PANEL_DDS2, ad9912.frequency[1]); logmsg("recenter ch4 to 275 kHz: DDS2 adjustment=%+3e", adj); } } if (recenter.enabled[HG]) { // adjust DDS3 frequency to keep Ch2 reading at 10 kHz double freq = ad9912.frequency[2]; double adj = 10000 - rollmean_ch2.mean; if (fabs(adj) > recenter.threshold[HG]) { logmessage(WARNING, "not recenter Hg beatnote (ch2) to 10 kHz: DDS3 adjustment=%+3e exceeds threshold", adj); } else { freq = freq + adj; ad9912_set_frequency_w(&ad9912, 2, freq); SetCtrlVal(MainPanel, PANEL_DDS3, ad9912.frequency[2]); logmsg("recenter Hg beatnote (ch2) to 10 kHz: DDS3 adjustment=%+3e", adj); } } if (recenter.enabled[SR]) { // adjust DDS4 frequency to keep Ch3 reading at 10 kHz double freq = ad9912.frequency[3]; double adj = 10000 - rollmean_ch3.mean; if (fabs(adj) > recenter.threshold[SR]) { logmessage(WARNING, "not recenter Sr beatnote (ch3) to 10 kHz: DDS4 adjustment=%+3e exceeds threshold", adj); } else { freq = freq + adj; ad9912_set_frequency_w(&ad9912, 3, freq); SetCtrlVal(MainPanel, PANEL_DDS4, ad9912.frequency[3]); logmsg("recenter Sr beatnote (ch3) to 10 kHz: DDS4 adjustment=%+3e", adj); } } recenter.t0 = utc; rollmean_zero(&rollmean_ch2); rollmean_zero(&rollmean_ch3); rollmean_zero(&rollmean_ch4); } } // data loggging static char *datafolder; struct datafile { char *name; double *data; int nchan; int control; int write; }; #define DATAFILE(__name, __data, __nchan, __control, __write) \ { \ .name = __name, \ .data = __data, \ .nchan = __nchan, \ .control = __control, \ .write = __write, \ } struct datafile datafiles[] = { // set the counter channels number to zero. it will // be updated when the configuration file is read DATAFILE("Raw", ev.data, 0, PANEL_SAVE_RAW, TRUE), DATAFILE("DDS", ad9912.frequency, 4, PANEL_SAVE_DDS, FALSE), DATAFILE("Lo", &Math2, 1, PANEL_SAVE_LO, FALSE), DATAFILE("Hg", &Math3, 1, PANEL_SAVE_HG, FALSE), DATAFILE("Sr", &Math4, 1, PANEL_SAVE_SR, FALSE), DATAFILE("Ex", &Math5, 1, PANEL_SAVE_EXTRA, FALSE), { NULL, } }; static void write_data(const char *folder, const char *name, const char *id, const char *timestr, double utc, double *v, int nchan) { int i, fd, len; char line[1024]; char filename[FILENAME_MAX]; // construct filename in the form folder\\id-name.txt snprintf(filename, sizeof(filename), "%s\\%s-%s.txt", folder, id, name); fd = open(filename, O_CREAT|O_WRONLY|O_APPEND, S_IRUSR|S_IWUSR|S_IRGRP); if (fd < 0) { logmessage(ERROR, "open data file %s: %s", filename, strerror(errno)); return; } // timestamp len = snprintf(line, sizeof(line), "%s\t%.3f", timestr, utc); // data channels for (i = 0; i < nchan; i++) len += snprintf(line + len, sizeof(line) - len, "\t%.16e", v[i]); // newline line[len++] = '\r'; line[len++] = '\n'; // write to file write(fd, line, len); close(fd); } static inline void datafile_append(struct datafile *d, char *id, char *timestr) { if (d->write) write_data(datafolder, d->name, id, timestr, utc, d->data, d->nchan); } static struct datalogger datalogger; static void onerror(int level, const char *msg) { SetCtrlVal(MainPanel, PANEL_ERROR, 1); } static void * muParserNew() { void *parser = mupCreate(); mupDefineOprtChars(parser, "abcdefghijklmnopqrstuvwxyzµ" "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "+-*^/?<>=#!$%&|~'_"); mupDefineVar(parser, "Ch1", &Ch1); mupDefineVar(parser, "Ch2", &Ch2); mupDefineVar(parser, "Ch3", &Ch3); mupDefineVar(parser, "Ch4", &Ch4); mupDefineVar(parser, "DDS1", &(ad9912.frequency[0])); mupDefineVar(parser, "DDS2", &(ad9912.frequency[1])); mupDefineVar(parser, "DDS3", &(ad9912.frequency[2])); mupDefineVar(parser, "DDS4", &(ad9912.frequency[3])); mupDefineVar(parser, "N1", &N1); mupDefineVar(parser, "N2", &N2); mupDefineVar(parser, "N3", &N3); mupDefineVar(parser, "Sign1", &Sign1); mupDefineVar(parser, "Sign2", &Sign2); mupDefineVar(parser, "Sign3", &Sign3); mupDefineVar(parser, "Ndiv", &Ndiv); mupDefinePostfixOprt(parser, "P", &Peta, 1); mupDefinePostfixOprt(parser, "T", &Tera, 1); mupDefinePostfixOprt(parser, "G", &Giga, 1); mupDefinePostfixOprt(parser, "M", &Mega, 1); mupDefinePostfixOprt(parser, "k", &kilo, 1); mupDefinePostfixOprt(parser, "m", &milli, 1); mupDefinePostfixOprt(parser, "u", µ, 1); mupDefinePostfixOprt(parser, "µ", µ, 1); mupDefinePostfixOprt(parser, "n", &nano, 1); mupDefinePostfixOprt(parser, "p", &pico, 1); mupDefinePostfixOprt(parser, "f", &femto, 1); return parser; } void CVICALLBACK DataAvailableCB (CmtTSQHandle queueHandle, unsigned int event, int value, void *callbackData); int main (int argc, char *argv[]) { int rv; int nchan; double frequency; char expr[1024]; char host[256]; double clock; if ((MainPanel = LoadPanel (0, "FXAnalyse.uir", PANEL)) < 0) return -1; if ((CalcNPanel = LoadPanel (MainPanel, "FXAnalyse.uir", CALCN)) < 0) return -1; if ((EstimateNPanel = LoadPanel (MainPanel, "FXAnalyse.uir", ESTIMATEN)) < 0) return -1; // logging logger_init(&onerror); // load configuration file char path[MAX_PATHNAME_LEN]; GetIniFilePath(path); IniText configuration = Ini_New(TRUE); Ini_ReadFromFile(configuration, path); // KK counter channel number rv = Ini_GetInt(configuration, "KK", "nchan", &nchan); if (rv < 1) nchan = 4; // update number of channels to save to disk datafiles[0].nchan = nchan; // data folder rv = Ini_GetStringCopy(configuration, "data", "folder", &datafolder); if (rv > 0) { logmessage(INFO, "writing data files in '%s'", datafolder); } else { logmessage(ERROR, "data folder not configured in %s", path); // do not allow to start the acquisition SetCtrlAttribute(MainPanel, PANEL_STARTBUTTON, ATTR_DIMMED, TRUE); } // ad9956 configuration parameters rv = Ini_GetStringIntoBuffer(configuration, "AD9956", "host", host, sizeof(host)); if (! rv) return -1; rv = Ini_GetDouble(configuration, "AD9956", "clock", &clock); if (! rv) return -1; // initialize AD9956 dedrift DDS rv = ad9956_init(&ad9956, host, clock); if (rv) logmessage(ERROR, "ad9956 init erorr=%d", -rv); ad9956_set_w(&ad9956, dedrift.fDDS, dedrift.applied); // AD9912 configuration parameters rv = Ini_GetStringIntoBuffer(configuration, "AD9912", "host", host, sizeof(host)); if (! rv) return -1; rv = Ini_GetDouble(configuration, "AD9912", "clock", &clock); if (! rv) return -1; // initialize AD9912 DDS box rv = ad9912_init(&ad9912, host, clock); if (rv) logmessage(ERROR, "ad9912 init erorr=%d", -rv); GetCtrlVal(MainPanel, PANEL_DDS1, &frequency); ad9912_set_frequency_w(&ad9912, 0, frequency); GetCtrlVal(MainPanel, PANEL_DDS2, &frequency); ad9912_set_frequency_w(&ad9912, 1, frequency); GetCtrlVal(MainPanel, PANEL_DDS3, &frequency); ad9912_set_frequency_w(&ad9912, 2, frequency); GetCtrlVal(MainPanel, PANEL_DDS4, &frequency); ad9912_set_frequency_w(&ad9912, 3, frequency); // setup ZMQ pub socket char *socket; rv = Ini_GetStringCopy(configuration, "ZMQ", "socket", &socket); if (! rv) socket = strdup("tcp://127.0.0.1:3456"); logmessage(INFO, "data sent to ZMQ socket '%s'", socket); zmqcontext = zmq_ctx_new(); zmqsocket = zmq_socket(zmqcontext, ZMQ_PUB); rv = zmq_bind(zmqsocket, socket); if (rv) logmessage(ERROR, "cannot bind ZMQ socket '%s': %s", socket, zmq_strerror(zmq_errno())); free(socket); // dispose configuration Ini_Dispose(configuration); // Sr data logger sr_datalogger_init(&datalogger); GetCtrlVal(MainPanel, PANEL_N1, &N1); GetCtrlVal(MainPanel, PANEL_N2, &N2); GetCtrlVal(MainPanel, PANEL_N3, &N3); MathParser1 = muParserNew(); GetCtrlVal(MainPanel, PANEL_MATHSTRING1, expr); mupSetExpr(MathParser1, expr); MathParser2 = muParserNew(); mupDefineVar(MathParser2, "Math1", &Math1); GetCtrlVal(MainPanel, PANEL_MATHSTRING2, expr); mupSetExpr(MathParser2, expr); MathParser3 = muParserNew(); mupDefineVar(MathParser3, "Math1", &Math1); mupDefineVar(MathParser3, "Math2", &Math2); GetCtrlVal(MainPanel, PANEL_MATHSTRING3, expr); mupSetExpr(MathParser3, expr); MathParser4 = muParserNew(); mupDefineVar(MathParser4, "Math1", &Math1); mupDefineVar(MathParser4, "Math2", &Math2); mupDefineVar(MathParser4, "Math3", &Math3); GetCtrlVal(MainPanel, PANEL_MATHSTRING4, expr); mupSetExpr(MathParser4, expr); MathParser5 = muParserNew(); mupDefineVar(MathParser5, "Math1", &Math1); mupDefineVar(MathParser5, "Math2", &Math2); mupDefineVar(MathParser5, "Math3", &Math3); mupDefineVar(MathParser5, "Math4", &Math4); GetCtrlVal(MainPanel, PANEL_MATHSTRING5, expr); mupSetExpr(MathParser5, expr); // data queue CmtNewTSQ(128, sizeof(struct event), 0, &dataQueue); // register callback to execute when data will be in the data queue CmtInstallTSQCallback(dataQueue, EVENT_TSQ_ITEMS_IN_QUEUE, 1, DataAvailableCB, NULL, CmtGetCurrentThreadID(), NULL); DisplayPanel(MainPanel); RunUserInterface(); DiscardPanel(MainPanel); return 0; } int CVICALLBACK QuitCallback (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: QuitUserInterface(0); break; } return 0; } int CVICALLBACK CB_OnEventMain(int panel, int event, void *callbackData, int eventData1, int eventData2) { int control, index; double step; #define do_arrow(__DDS, __STEP) \ do { \ GetCtrlIndex(panel, __STEP, &index); \ if ((eventData1 == VAL_RIGHT_ARROW_VKEY) && (index < 14)) \ SetCtrlIndex(panel, __STEP, index + 1); \ if ((eventData1 == VAL_LEFT_ARROW_VKEY) && (index > 0)) \ SetCtrlIndex(panel, __STEP, index - 1); \ GetCtrlVal(panel, __STEP, &step); \ SetCtrlAttribute(panel, __DDS, ATTR_INCR_VALUE, step); \ } while (0) switch (event) { case EVENT_KEYPRESS: /* key code */ switch (eventData1) { case VAL_RIGHT_ARROW_VKEY: case VAL_LEFT_ARROW_VKEY: control = GetActiveCtrl(panel); switch (control) { case PANEL_DDS1: case PANEL_DDS1STEP: do_arrow(PANEL_DDS1, PANEL_DDS1STEP); break; case PANEL_DDS2: case PANEL_DDS2STEP: do_arrow(PANEL_DDS2, PANEL_DDS2STEP); break; case PANEL_DDS3: case PANEL_DDS3STEP: do_arrow(PANEL_DDS3, PANEL_DDS3STEP); break; case PANEL_DDS4: case PANEL_DDS4STEP: do_arrow(PANEL_DDS4, PANEL_DDS4STEP); break; } break; case VAL_F2_VKEY : SetActiveCtrl(panel, PANEL_DDS1); break; case VAL_F3_VKEY : SetActiveCtrl(panel, PANEL_DDS2); break; case VAL_F4_VKEY : SetActiveCtrl(panel, PANEL_DDS3); break; case VAL_F5_VKEY : SetActiveCtrl(panel, PANEL_DDS4); break; } break; } return 0; } int CVICALLBACK CB_OnStart (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: if (acquiring) break; logmsg("start"); SetCtrlAttribute(panel, PANEL_STARTBUTTON, ATTR_DIMMED, TRUE); acquiring = 1; // start data provider thread CmtScheduleThreadPoolFunctionAdv( DEFAULT_THREAD_POOL_HANDLE, DataProvider, NULL, THREAD_PRIORITY_HIGHEST, NULL, 0, NULL, 0, &dataProviderThread); break; } return 0; } int CVICALLBACK CB_OnStop (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: if (! acquiring) break; logmsg("stop"); acquiring = 0; // wait for data provider thread to terminate CmtWaitForThreadPoolFunctionCompletion( DEFAULT_THREAD_POOL_HANDLE, dataProviderThread, OPT_TP_PROCESS_EVENTS_WHILE_WAITING); CmtReleaseThreadPoolFunctionID( DEFAULT_THREAD_POOL_HANDLE, dataProviderThread); SetCtrlAttribute(panel, PANEL_STARTBUTTON, ATTR_DIMMED, FALSE); break; } return 0; } void CVICALLBACK DataAvailableCB (CmtTSQHandle queueHandle, unsigned int event, int value, void *callbackData) { int read; switch (event) { case EVENT_TSQ_ITEMS_IN_QUEUE: // read data from the data queue while (value > 0) { read = CmtReadTSQData(queueHandle, &ev, 1, TSQ_INFINITE_TIMEOUT, 0); if (read != 1) logmsg("Error!"); value = value - read; // unpack event utc = ev.time.tv_sec + ev.time.tv_usec * 1e-6; // update display SetCtrlVal(MainPanel, PANEL_UTC, utc); SetCtrlVal(MainPanel, PANEL_CH1, Ch1); SetCtrlVal(MainPanel, PANEL_CH2, Ch2); SetCtrlVal(MainPanel, PANEL_CH3, Ch3); SetCtrlVal(MainPanel, PANEL_CH4, Ch4); // compute Math1 = mupEval(MathParser1); Math2 = mupEval(MathParser2); Math3 = mupEval(MathParser3); Math4 = mupEval(MathParser4); Math5 = mupEval(MathParser5); // update display. numeric controllers do not format values // with a thousands separator: use string controllers and a // custom formatting function char buffer[256]; SetCtrlVal(MainPanel, PANEL_MATH1, thousands(buffer, sizeof(buffer), "%.6f", Math1)); SetCtrlVal(MainPanel, PANEL_MATH2, thousands(buffer, sizeof(buffer), "%.3f", Math2)); SetCtrlVal(MainPanel, PANEL_MATH3, thousands(buffer, sizeof(buffer), "%.3f", Math3)); SetCtrlVal(MainPanel, PANEL_MATH4, thousands(buffer, sizeof(buffer), "%.3f", Math4)); SetCtrlVal(MainPanel, PANEL_MATH5, thousands(buffer, sizeof(buffer), "%.3f", Math5)); // update timeseries plots for (struct plot *plot = plots; plot->data; plot++) plot_update(plot); // update allan deviation plots for (struct adev *adev = adevs; adev->data; adev++) adev_update(adev); // N measurement switch (n_measurement_1) { case N_MEASUREMENT_NONE: // not measuring break; case N_MEASUREMENT_INIT: // initialization step // set DDS1 to nominal frequency ad9912_set_frequency_w(&ad9912, 0, f0_DDS1); SetCtrlVal(MainPanel, PANEL_DDS1, ad9912.frequency[0]); // record current DDS frequencies f0_DDS2 = ad9912.frequency[1]; t1 = utc; t2 = t3 = 0.0; nobs = 0; stat_zero(&stat_math1); f_rep_plus = f_rep_minus = 0.0; // next step n_measurement_1 += 1; break; case N_MEASUREMENT_SLOPE: // slope measurement stat_accumulate(&stat_math1, Math1); if ((utc - t1) > slope_time_1) { f_rep_slope = stat_math1.slope; // frep positive step ad9912_ramp_frequency_w(&ad9912, 0, f0_DDS1 + delta_f_lock_1, FREP_STEP_SIZE); SetCtrlVal(MainPanel, PANEL_DDS1, ad9912.frequency[0]); // allow counter to settle settling = 3; // next step n_measurement_1 += 1; } break; case N_MEASUREMENT_ADJUST_FREQ_PLUS: case N_MEASUREMENT_ADJUST_FREQ_MINUS: // adjust DDS frequency to keep beatnote within the bandpass filter if (settling-- > 0) break; double fDDS2 = ad9912.frequency[1]; ad9912_set_frequency_w(&ad9912, 1, fDDS2 + 275000 - Ch4); SetCtrlVal(MainPanel, PANEL_DDS2, ad9912.frequency[1]); // allow counter to settle settling = 3; // next step n_measurement_1 += 1; break; case N_MEASUREMENT_FREP_PLUS: // frep positive step if (settling-- > 0) break; if (t2 == 0.0) t2 = utc; f_rep_plus += Math1 - f_rep_slope * (utc - t2); nobs += 1; if ((utc - t2) > integration_time_1) { f_rep_plus = f_rep_plus / nobs; nobs = 0; // frep negative step ad9912_ramp_frequency_w(&ad9912, 0, f0_DDS1 - delta_f_lock_1, FREP_STEP_SIZE); SetCtrlVal(MainPanel, PANEL_DDS1, ad9912.frequency[0]); // allow counter to settle settling = 3; // next step n_measurement_1 += 1; } break; case N_MEASUREMENT_FREP_MINUS: // frep negative step if (settling-- > 0) break; if (t3 == 0.0) t3 = utc; f_rep_minus += Math1 - f_rep_slope * (utc - t2); nobs += 1; if ((utc - t3) > integration_time_1) { f_rep_minus = f_rep_minus / nobs; nobs = 0; // compute N1 double delta_f_rep = f_rep_minus - f_rep_plus; double measured = Sign1 * 2 * Ndiv * delta_f_lock_1 / delta_f_rep; SetCtrlVal(CalcNPanel, CALCN_N, measured); // back to nominal frep ad9912_ramp_frequency_w(&ad9912, 0, f0_DDS1, FREP_STEP_SIZE); ad9912_set_frequency_w(&ad9912, 1, f0_DDS2); SetCtrlVal(MainPanel, PANEL_DDS1, ad9912.frequency[0]); SetCtrlVal(MainPanel, PANEL_DDS2, ad9912.frequency[1]); // done n_measurement_1 = N_MEASUREMENT_NONE; } break; } switch (n_measurement_2) { case N_MEASUREMENT_NONE: // not measuring break; case N_MEASUREMENT_INIT: // initialization step // set DDS1 to nominal frequency ad9912_set_frequency_w(&ad9912, 0, f0_DDS1); SetCtrlVal(MainPanel, PANEL_DDS1, ad9912.frequency[0]); // record current DDS frequencies f0_DDS2 = ad9912.frequency[1]; f0_DDS3 = ad9912.frequency[2]; t1 = utc; t2 = t3 = 0.0; nobs = 0; stat_zero(&stat_math1); stat_zero(&stat_ch2); f_rep_plus = f_rep_minus = 0.0; f_beat_plus = f_beat_minus = 0.0; // next step n_measurement_2 += 1; break; case N_MEASUREMENT_SLOPE: // slope measurement stat_accumulate(&stat_math1, Math1); stat_accumulate(&stat_ch2, Ch2); if ((utc - t1) > slope_time_2) { f_rep_slope = stat_math1.slope; f_beat_slope = stat_ch2.slope; // frep positive step double fDDS1 = f0_DDS1 + delta_f_lock_2; ad9912_ramp_frequency_w(&ad9912, 0, fDDS1, FREP_STEP_SIZE); SetCtrlVal(MainPanel, PANEL_DDS1, ad9912.frequency[0]); // adjust DDS3 to keep beatnote within the bandpass filter. prediction double fDDS3 = f0_DDS3 + Sign1 * Sign2 * N2/N1 * Ndiv * delta_f_lock_2; df_DDS3 = fDDS3 - ad9912.frequency[2]; ad9912_set_frequency_w(&ad9912, 2, fDDS3); SetCtrlVal(MainPanel, PANEL_DDS3, ad9912.frequency[2]); // allow counter to settle settling = 3; // next step n_measurement_2 += 1; } break; case N_MEASUREMENT_ADJUST_FREQ_PLUS: case N_MEASUREMENT_ADJUST_FREQ_MINUS: // adjust DDS frequency to keep beatnote within the bandpass filter if (settling-- > 0) break; double fDDS2 = ad9912.frequency[1] + 275000 - Ch4; ad9912_set_frequency_w(&ad9912, 1, fDDS2); SetCtrlVal(MainPanel, PANEL_DDS2, ad9912.frequency[1]); double fDDS3 = ad9912.frequency[2] + 10000 - Ch2; df_DDS3 = df_DDS3 + 10000 - Ch2; ad9912_set_frequency_w(&ad9912, 2, fDDS3); SetCtrlVal(MainPanel, PANEL_DDS3, ad9912.frequency[2]); // allow counter to settle settling = 3; // next step n_measurement_2 += 1; break; case N_MEASUREMENT_FREP_PLUS: // frep positive step if (settling-- > 0) break; if (t2 == 0.0) t2 = utc; f_rep_plus += Math1 + 250000000 - f_rep_slope * (utc - t2); f_beat_plus += Ch2 - f_beat_slope * (utc - t2); nobs += 1; if ((utc - t2) > integration_time_2) { f_rep_plus = f_rep_plus / nobs; f_beat_plus = f_beat_plus / nobs; nobs = 0; // negative frequency step double fDDS1 = f0_DDS1 - delta_f_lock_2; ad9912_ramp_frequency_w(&ad9912, 0, fDDS1, FREP_STEP_SIZE); SetCtrlVal(MainPanel, PANEL_DDS1, ad9912.frequency[0]); // adjust DDS3 to keep beatnote within the bandpass filter. prediction double fDDS3 = f0_DDS3 - Sign1 * Sign2 * N2/N1 * Ndiv * delta_f_lock_2; df_DDS3 = fDDS3 - ad9912.frequency[2]; ad9912_set_frequency_w(&ad9912, 2, fDDS3); SetCtrlVal(MainPanel, PANEL_DDS3, ad9912.frequency[2]); // allow counter to settle settling = 3; // next step n_measurement_2 += 1; } break; case N_MEASUREMENT_FREP_MINUS: // frep negative step if (settling-- > 0) break; if (t3 == 0.0) t3 = utc; f_rep_minus += Math1 + 250000000 - f_rep_slope * (utc - t2); f_beat_minus += Ch2 + f_beat_slope * (utc - t2); nobs += 1; if ((utc -t3) > integration_time_2) { f_rep_minus = f_rep_minus / nobs; f_beat_minus = f_beat_minus / nobs; nobs = 0; // compute N2 double delta_f_rep_m = f_rep_minus - f_rep_plus; double delta_f_rep = Sign1 * Ndiv * 2.0 * delta_f_lock_2 / N1; double delta = delta_f_rep_m - delta_f_rep; logmsg("delta frep: measured=%e expected=%e difference=%e rel=%e", delta_f_rep_m, delta_f_rep, delta, delta / delta_f_rep); double measured = -Sign2 * (df_DDS3 + f_beat_minus - f_beat_plus) / delta_f_rep; SetCtrlVal(CalcNPanel, CALCN_N, measured); // back to nominal frequency ad9912_ramp_frequency_w(&ad9912, 0, f0_DDS1, FREP_STEP_SIZE); ad9912_set_frequency_w(&ad9912, 1, f0_DDS2); ad9912_set_frequency_w(&ad9912, 2, f0_DDS3); SetCtrlVal(MainPanel, PANEL_DDS1, ad9912.frequency[0]); SetCtrlVal(MainPanel, PANEL_DDS2, ad9912.frequency[1]); SetCtrlVal(MainPanel, PANEL_DDS3, ad9912.frequency[2]); // done n_measurement_2 = N_MEASUREMENT_NONE; } break; } switch (n_measurement_3) { case N_MEASUREMENT_NONE: // not measuring N3 break; case N_MEASUREMENT_INIT: // init // set DDS1 to nominal frequency ad9912_set_frequency_w(&ad9912, 0, f0_DDS1); SetCtrlVal(MainPanel, PANEL_DDS1, ad9912.frequency[0]); // record current DDS frequencies f0_DDS2 = ad9912.frequency[1]; f0_DDS4 = ad9912.frequency[3]; t1 = utc; t2 = t3 = 0.0; nobs = 0; stat_zero(&stat_math1); stat_zero(&stat_ch3); f_rep_plus = f_rep_minus = 0.0; f_beat_plus = f_beat_minus = 0.0; // next step n_measurement_3 += 1; break; case N_MEASUREMENT_SLOPE: // slope measurement if (settling-- > 0) break; stat_accumulate(&stat_math1, Math1); stat_accumulate(&stat_ch3, Ch3); if (utc - t1 > slope_time_3) { // slope measurement f_rep_slope = stat_math1.slope; f_beat_slope = stat_ch3.slope; logmsg("f_rep_slope=%e Hz/s", f_rep_slope); logmsg("f_beat_slope=%e Hz/s", f_rep_slope); // frep positive step ad9912_ramp_frequency_w(&ad9912, 0, f0_DDS1 + delta_f_lock_3, FREP_STEP_SIZE); SetCtrlVal(MainPanel, PANEL_DDS1, ad9912.frequency[0]); // adjust DDS3 to keep beatnote within the bandpass filter double fDDS4 = f0_DDS4 + Sign1 * Sign3 * N3/N1 * Ndiv * delta_f_lock_3; ad9912_set_frequency_w(&ad9912, 3, fDDS4); SetCtrlVal(MainPanel, PANEL_DDS4, ad9912.frequency[3]); // allow counter to settle settling = 3; // next step n_measurement_3 += 1; } break; case N_MEASUREMENT_ADJUST_FREQ_PLUS: case N_MEASUREMENT_ADJUST_FREQ_MINUS: // adjust DDS frequency to keep beatnote within the bandpass filter if (settling-- > 0) break; // adjust DDS frequency to keep 55 MHz tracker oscillator locked double fDDS2 = ad9912.frequency[1] + 275000 - Ch4; ad9912_set_frequency_w(&ad9912, 1, fDDS2); SetCtrlVal(MainPanel, PANEL_DDS2, ad9912.frequency[1]); // allow counter to settle settling = 3; // next step n_measurement_3 += 1; break; case N_MEASUREMENT_FREP_PLUS: // frep positive step if (settling-- > 0) break; if (t2 == 0.0) t2 = utc; f_rep_plus += Math1 + 250000000 - f_rep_slope * (utc - t2); f_beat_plus += Ch3 - f_beat_slope * (utc - t2); nobs += 1; if (utc - t2 > integration_time_3) { f_rep_plus = f_rep_plus / nobs; f_beat_plus = f_beat_plus / nobs; nobs = 0; // frep negative step ad9912_ramp_frequency_w(&ad9912, 0, f0_DDS1 - delta_f_lock_3, FREP_STEP_SIZE); SetCtrlVal(MainPanel, PANEL_DDS1, ad9912.frequency[0]); // adjust DDS3 to keep beatnote within the bandpass filter double fDDS4 = f0_DDS4 - Sign1 * Sign3 * N3/N1 * Ndiv * delta_f_lock_3; ad9912_set_frequency_w(&ad9912, 3, fDDS4); SetCtrlVal(MainPanel, PANEL_DDS4, ad9912.frequency[3]); // allow counter to settle settling = 3; // next step n_measurement_3 += 1; } break; case N_MEASUREMENT_FREP_MINUS: // frep negative step if (settling-- > 0) break; if (t3 == 0.0) t3 = utc; f_rep_minus += Math1 + 250000000 - f_rep_slope * (utc - t2); f_beat_minus += Ch3 - f_beat_slope * (utc - t2); nobs += 1; if (utc - t3 > integration_time_3) { f_rep_minus = f_rep_minus / nobs; f_beat_minus = f_beat_minus / nobs; nobs = 0; // check delta frep double delta_f_rep_m = f_rep_minus - f_rep_plus; double delta_f_rep = Sign1 * Ndiv * 2.0 * delta_f_lock_3 / N1; double delta = delta_f_rep_m - delta_f_rep; logmsg("delta frep: measured=%e expected=%e difference=%e rel=%e", delta_f_rep_m, delta_f_rep, delta, delta / delta_f_rep); // compute N3 double delta_f_beat = f_beat_minus - f_beat_plus + 2.0 * Sign1 * Sign3 * N3/N1 * Ndiv * delta_f_lock_3; double delta_f_beat_expected = delta_f_rep * N3; logmsg("delta fbeat: measured=%e expected=%e difference=%e", delta_f_beat, delta_f_beat_expected, delta_f_beat - delta_f_beat_expected); double measured = delta_f_beat / delta_f_rep; SetCtrlVal(CalcNPanel, CALCN_N, measured); logmsg("measured N3=%.3f", measured); // back to nominal frep ad9912_ramp_frequency_w(&ad9912, 0, f0_DDS1, FREP_STEP_SIZE); ad9912_set_frequency_w(&ad9912, 1, f0_DDS2); ad9912_set_frequency_w(&ad9912, 3, f0_DDS4); SetCtrlVal(MainPanel, PANEL_DDS1, ad9912.frequency[0]); SetCtrlVal(MainPanel, PANEL_DDS2, ad9912.frequency[1]); SetCtrlVal(MainPanel, PANEL_DDS4, ad9912.frequency[3]); // done n_measurement_3 = N_MEASUREMENT_NONE; } break; } // beatnote sign determination if ((beatsign.measure) && (utc > beatsign.t0 + 2.0)) { int f_beat_sign, f_rep_sign = 0; switch (beatsign.measure) { case LO: f_rep_sign = (Math1 > beatsign.f_rep_zero) ? -1 : 1; Sign1 = f_rep_sign; SetCtrlVal(MainPanel, PANEL_SIGN1, Sign1); break; case HG: f_rep_sign = (Math1 > beatsign.f_rep_zero) ? -1 : 1; f_beat_sign = (Ch2 > beatsign.f_beat_zero) ? -1 : 1; Sign2 = f_rep_sign * f_beat_sign; SetCtrlVal(MainPanel, PANEL_SIGN2, Sign2); break; case SR: f_rep_sign = (Math1 > beatsign.f_rep_zero) ? -1 : 1; f_beat_sign = (Ch3 > beatsign.f_beat_zero) ? -1 : 1; Sign3 = f_rep_sign * f_beat_sign; SetCtrlVal(MainPanel, PANEL_SIGN3, Sign3); break; } // back to original repetition rate ad9912_set_frequency_w(&ad9912, 0, beatsign.f0_DDS1); SetCtrlVal(MainPanel, PANEL_DDS1, ad9912.frequency[0]); // measurement done beatsign.measure = 0; // in the case of the optical beatnotes sign measurement // we induce fairly small steps in f_rep therefore it is // good to check that we get the sign of the comb locking // beatnote right in those cases if (f_rep_sign != Sign1) logmessage(ERROR, "merasured f_rep_sign does not agree with previous determination!"); } // select dedrift reference double f = 0.0; switch (dedrift.reference) { case DEDRIFT_REFERENCE_MICROWAVE: f = Math2; break; case DEDRIFT_REFERENCE_HG: f = Ch2 * 1062.5 / 1542.2; break; } // dedrift dedrift_update(f); // recenter recenter_update(); struct tm *time = gmtime(&ev.time.tv_sec); // round to milliseconds int msec = round(ev.time.tv_usec / 1000.0); while (msec >= 1000) { time->tm_sec += 1; msec -= 1000; } // format time char timestr[24]; int len = strftime(timestr, sizeof(timestr), "%d/%m/%Y %H:%M:%S", time); snprintf(timestr + len, sizeof(timestr) - len, ".%03d", msec); // display local time SetCtrlVal(MainPanel, PANEL_TIME, timestr); // run id derived from current date in the form YYMMDD char id[7]; strftime(id, sizeof(id), "%y%m%d", time); // write datafiles for (struct datafile *d = datafiles; d->data; d++) datafile_append(d, id, timestr); // send Sr frequency (Math4) to Sr data logger sr_datalogger_send(&datalogger, utc, Math4); // publish data through ZMQ int r = zmq_xpub(zmqsocket, "RAW", &ev, sizeof(ev)); if (r) logmessage(ERROR, "cannot send data through ZMQ socket: %s", zmq_strerror(r)); } break; } } int CVICALLBACK CB_OnFreqPlot (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: for (struct plot *plot = plots; plot->data; plot++) { if (plot->control == control) plot_toggle(plot); } break; } return 0; } int CVICALLBACK CB_OnAllanPlot (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: for (struct adev *adev = adevs; adev->data; adev++) { if (adev->control == control) adev_toggle(adev); } break; } return 0; } int CVICALLBACK CB_ChangeDDSOut (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: double frequency; GetCtrlVal(MainPanel, control, &frequency); switch (control) { case PANEL_DDS1: ad9912_set_frequency_w(&ad9912, 0, frequency); SetCtrlVal(MainPanel, PANEL_DDS1, ad9912.frequency[0]); break; case PANEL_DDS2: ad9912_set_frequency_w(&ad9912, 1, frequency); SetCtrlVal(MainPanel, PANEL_DDS2, ad9912.frequency[1]); break; case PANEL_DDS3: ad9912_set_frequency_w(&ad9912, 2, frequency); SetCtrlVal(MainPanel, PANEL_DDS3, ad9912.frequency[2]); break; case PANEL_DDS4: ad9912_set_frequency_w(&ad9912, 3, frequency); SetCtrlVal(MainPanel, PANEL_DDS4, ad9912.frequency[3]); break; } break; } return 0; } int CVICALLBACK CB_ChangeDDSStep (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: double step; GetCtrlVal(panel, control, &step); switch (control) { case PANEL_DDS1STEP: SetCtrlAttribute(panel, PANEL_DDS1, ATTR_INCR_VALUE, step); break; case PANEL_DDS2STEP: SetCtrlAttribute(panel, PANEL_DDS2, ATTR_INCR_VALUE, step); break; case PANEL_DDS3STEP: SetCtrlAttribute(panel, PANEL_DDS3, ATTR_INCR_VALUE, step); break; case PANEL_DDS4STEP: SetCtrlAttribute(panel, PANEL_DDS4, ATTR_INCR_VALUE, step); break; } break; } return 0; } int CVICALLBACK CB_ChangeMath (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { int len; char *string; switch (event) { case EVENT_COMMIT: GetCtrlAttribute(panel, control, ATTR_STRING_TEXT_LENGTH, &len); string = (char *)malloc(sizeof(char) * (len + 1)); GetCtrlVal(panel, control, string); switch (control) { case PANEL_MATHSTRING1: mupSetExpr(MathParser1, string); break; case PANEL_MATHSTRING2: mupSetExpr(MathParser2, string); break; case PANEL_MATHSTRING3: mupSetExpr(MathParser3, string); break; case PANEL_MATHSTRING4: mupSetExpr(MathParser4, string); break; case PANEL_MATHSTRING5: mupSetExpr(MathParser5, string); break; } free(string); break; } return 0; } int CVICALLBACK CB_ChangeN (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: switch (control) { case PANEL_N1: GetCtrlVal(panel, control, &N1); break; case PANEL_N2: GetCtrlVal(panel, control, &N2); break; case PANEL_N3: GetCtrlVal(panel, control, &N3); break; } break; } return 0; } int CVICALLBACK CB_OnAcceptN (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { int measure; double measured; switch (event) { case EVENT_COMMIT: GetPanelAttribute(panel, ATTR_CALLBACK_DATA, &measure); GetCtrlVal(panel, CALCN_N, &measured); switch (measure) { case LO: N1 = round(measured); SetCtrlVal(MainPanel, PANEL_N1, N1); break; case HG: N2 = round(measured); SetCtrlVal(MainPanel, PANEL_N2, N2); break; case SR: N3 = round(measured); SetCtrlVal(MainPanel, PANEL_N3, N3); break; } break; } return 0; } int CVICALLBACK CB_OnNCalculus (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { int visible; switch (event) { case EVENT_COMMIT: switch (control) { case PANEL_N1CALCULUS: GetPanelAttribute(CalcNPanel, ATTR_VISIBLE, &visible); if (! visible) { SetPanelAttribute(CalcNPanel, ATTR_CALLBACK_DATA, INT_TO_PTR(LO)); SetPanelAttribute(CalcNPanel, ATTR_TITLE, "Measure N_Lo"); SetCtrlVal(CalcNPanel, CALCN_INTEGRATIONTIME, integration_time_1); SetCtrlVal(CalcNPanel, CALCN_SLOPETIME, slope_time_1); SetCtrlVal(CalcNPanel, CALCN_DELTAFREQ, delta_f_lock_1 / 1000.0); SetCtrlVal(CalcNPanel, CALCN_N, 0.0); DisplayPanel(CalcNPanel); } break; case PANEL_N2CALCULUS: GetPanelAttribute(CalcNPanel, ATTR_VISIBLE, &visible); if (! visible) { SetPanelAttribute(CalcNPanel, ATTR_CALLBACK_DATA, INT_TO_PTR(HG)); SetPanelAttribute(CalcNPanel, ATTR_TITLE, "Measure N_Hg"); SetCtrlVal(CalcNPanel, CALCN_INTEGRATIONTIME, integration_time_2); SetCtrlVal(CalcNPanel, CALCN_SLOPETIME, slope_time_2); SetCtrlVal(CalcNPanel, CALCN_DELTAFREQ, delta_f_lock_2 / 1000.0); SetCtrlVal(CalcNPanel, CALCN_N, 0.0); DisplayPanel(CalcNPanel); } break; case PANEL_N3CALCULUS: GetPanelAttribute(CalcNPanel, ATTR_VISIBLE, &visible); if (! visible) { SetPanelAttribute(CalcNPanel, ATTR_CALLBACK_DATA, INT_TO_PTR(SR)); SetPanelAttribute(CalcNPanel, ATTR_TITLE, "Measure N_Sr"); SetCtrlVal(CalcNPanel, CALCN_INTEGRATIONTIME, integration_time_3); SetCtrlVal(CalcNPanel, CALCN_SLOPETIME, slope_time_3); SetCtrlVal(CalcNPanel, CALCN_DELTAFREQ, delta_f_lock_3 / 1000.0); SetCtrlVal(CalcNPanel, CALCN_N, 0.0); DisplayPanel(CalcNPanel); } break; } break; } return 0; } int CVICALLBACK CB_OnStartNCalculus (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { void *v; int measuring; switch (event) { case EVENT_COMMIT: GetPanelAttribute(panel, ATTR_CALLBACK_DATA, &v); measuring = PTR_TO_INT(v); switch (measuring) { case LO: GetCtrlVal(CalcNPanel, CALCN_INTEGRATIONTIME, &integration_time_1); GetCtrlVal(CalcNPanel, CALCN_SLOPETIME, &slope_time_1); GetCtrlVal(CalcNPanel, CALCN_DELTAFREQ, &delta_f_lock_1); // convert from kHz to Hz delta_f_lock_1 = delta_f_lock_1 * 1000.0; n_measurement_1 = TRUE; break; case HG: GetCtrlVal(CalcNPanel, CALCN_INTEGRATIONTIME, &integration_time_2); GetCtrlVal(CalcNPanel, CALCN_SLOPETIME, &slope_time_2); GetCtrlVal(CalcNPanel, CALCN_DELTAFREQ, &delta_f_lock_2); // convert from kHz to Hz delta_f_lock_2 = delta_f_lock_2 * 1000.0; n_measurement_2 = TRUE; break; case SR: GetCtrlVal(CalcNPanel, CALCN_INTEGRATIONTIME, &integration_time_3); GetCtrlVal(CalcNPanel, CALCN_SLOPETIME, &slope_time_3); GetCtrlVal(CalcNPanel, CALCN_DELTAFREQ, &delta_f_lock_3); // convert from kHz to Hz delta_f_lock_3 = delta_f_lock_3 * 1000.0; n_measurement_3 = TRUE; break; } break; } return 0; } int CVICALLBACK CB_OnNStop (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { void *v; int measuring; switch (event) { case EVENT_COMMIT: HidePanel(CalcNPanel); GetPanelAttribute(panel, ATTR_CALLBACK_DATA, &v); measuring = PTR_TO_INT(v); switch (measuring) { case LO: n_measurement_1 = FALSE; ad9912_ramp_frequency_w(&ad9912, 0, f0_DDS1, FREP_STEP_SIZE); ad9912_set_frequency_w(&ad9912, 1, f0_DDS2); break; case HG: n_measurement_2 = FALSE; ad9912_ramp_frequency_w(&ad9912, 0, f0_DDS1, FREP_STEP_SIZE); ad9912_set_frequency_w(&ad9912, 1, f0_DDS2); ad9912_set_frequency_w(&ad9912, 2, f0_DDS3); break; case SR: n_measurement_3 = FALSE; ad9912_ramp_frequency_w(&ad9912, 0, f0_DDS1, FREP_STEP_SIZE); ad9912_set_frequency_w(&ad9912, 1, f0_DDS2); ad9912_set_frequency_w(&ad9912, 3, f0_DDS4); break; } // update DDS frequencies display SetCtrlVal(MainPanel, PANEL_DDS1, ad9912.frequency[0]); SetCtrlVal(MainPanel, PANEL_DDS2, ad9912.frequency[1]); SetCtrlVal(MainPanel, PANEL_DDS3, ad9912.frequency[2]); SetCtrlVal(MainPanel, PANEL_DDS4, ad9912.frequency[3]); break; } return 0; } int CVICALLBACK CB_OnFindSign (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { double step = 0.0; switch (event) { case EVENT_COMMIT: switch (control) { case PANEL_FINDSIGN1: beatsign.measure = LO; beatsign.f_beat_zero = 0.0; step = f_lock_step_1; break; case PANEL_FINDSIGN2: beatsign.measure = HG; beatsign.f_beat_zero = Ch2; step = f_lock_step_2; break; case PANEL_FINDSIGN3: beatsign.measure = SR; beatsign.f_beat_zero = Ch3; step = f_lock_step_3; break; } beatsign.t0 = utc; beatsign.f_rep_zero = Math1; // step the repetition rate beatsign.f0_DDS1 = ad9912.frequency[0]; ad9912_set_frequency_w(&ad9912, 0, beatsign.f0_DDS1 + step); SetCtrlVal(MainPanel, PANEL_DDS1, ad9912.frequency[0]); break; } return 0; } int CVICALLBACK CB_AdjustDDSFreq (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { double frequency; switch (event) { case EVENT_COMMIT: switch (control) { case PANEL_ADJUST_DDS2: frequency = ad9912.frequency[1] + 275000 - Ch4; ad9912_set_frequency_w(&ad9912, 1, frequency); SetCtrlVal(MainPanel, PANEL_DDS2, ad9912.frequency[1]); break; case PANEL_ADJUST_DDS3: frequency = ad9912.frequency[2] + 10000 - Ch2; ad9912_set_frequency_w(&ad9912, 2, frequency); SetCtrlVal(MainPanel, PANEL_DDS3, ad9912.frequency[2]); break; case PANEL_ADJUST_DDS4: frequency = ad9912.frequency[3] + 10000 - Ch3; ad9912_set_frequency_w(&ad9912, 3, frequency); SetCtrlVal(MainPanel, PANEL_DDS4, ad9912.frequency[3]); break; } break; } return 0; } int CVICALLBACK CB_OnChangeNdiv (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: GetCtrlVal(MainPanel, PANEL_CHANGENDIV, &Ndiv); f0_DDS1 = 880000000.0 / Ndiv; ad9912_set_frequency_w(&ad9912, 0, f0_DDS1); SetCtrlVal(MainPanel, PANEL_DDS1, ad9912.frequency[0]); break; } return 0; } int CVICALLBACK CB_MeasureSlope (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { int enable; switch (event) { case EVENT_COMMIT: GetCtrlVal(panel, control, &enable); enable ? dedrift_update_enable() : dedrift_update_disable(); break; } return 0; } int CVICALLBACK CB_OnResetSlope (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: dedrift.applied = 0.0; SetCtrlVal(panel, PANEL_SLOPE_APPLIED, dedrift.applied); ad9956_set_w(&ad9956, dedrift.fDDS, dedrift.applied); logmsg("dedrift: reset"); break; } return 0; } int CVICALLBACK CB_ChangeSlopeTime (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: GetCtrlVal(MainPanel, PANEL_SLOPETIME, &dedrift.interval); break; } return 0; } int CVICALLBACK CB_OnDedriftSettingsChange (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: switch (control) { case PANEL_DEDRIFT_PROPORTIONAL: // include correction proportional to frequency GetCtrlVal(panel, control, &dedrift.proportional); break; case PANEL_DEDRIFT_DOUBLE_CORR: // double slope correction GetCtrlVal(panel, control, &dedrift.x2); break; case PANEL_DEDRIFT_KEEP_FREQ: // keep current dedrifting frequency when dedrifting is disabled GetCtrlVal(panel, control, &dedrift.keep_freq); break; case PANEL_DEDRIFT_KEEP_SLOPE: // keep current dedrifting slope when dedrifting is disabled GetCtrlVal(panel, control, &dedrift.keep_slope); break; } break; } return 0; } int CVICALLBACK CB_RecenterEnable (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: GetCtrlVal(panel, control, &recenter.active); recenter.t0 = utc; rollmean_zero(&rollmean_ch2); rollmean_zero(&rollmean_ch3); rollmean_zero(&rollmean_ch4); break; } return 0; } int CVICALLBACK CB_OnStopSlopeCancellingOnUnlocked (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: GetCtrlVal(panel, control, &dedrift.safety); break; } return 0; } int CVICALLBACK CB_OnSlopeReference (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: GetCtrlVal(panel, control, &dedrift.reference); break; } return 0; } int CVICALLBACK CB_SetSlope (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: GetCtrlVal(panel, control, &dedrift.applied); ad9956_set_sweep_rate_w(&ad9956, dedrift.applied); break; } return 0; } int CVICALLBACK CB_InvertSlopeSign (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { int invert; switch (event) { case EVENT_COMMIT: GetCtrlVal(panel, control, &invert); dedrift.sign = invert ? -1 : +1; break; } return 0; } int CVICALLBACK CB_ResetDedriftDDS (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: // stop slope measurement and reset slope dedrift.enabled = FALSE; SetCtrlVal(panel, PANEL_MEASURE_SLOPE, 0); dedrift.applied = 0.0; SetCtrlVal(panel, PANEL_SLOPE_APPLIED, dedrift.applied); // reset DDS ad9956_set_w(&ad9956, dedrift.fDDS, dedrift.applied); break; } return 0; } int CVICALLBACK CB_ShowLog (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { int visible; switch (event) { case EVENT_COMMIT: GetCtrlVal(panel, control, &visible); logger_panel_visible(visible); break; } return 0; } int CVICALLBACK CB_ShowError (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: logger_panel_visible(TRUE); SetCtrlVal(panel, control, FALSE); SetCtrlVal(panel, PANEL_SHOWLOG, TRUE); break; } return 0; } int CVICALLBACK CB_OnLoggingPanelEvent(int panel, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_CLOSE: logger_panel_visible(0); SetCtrlVal(MainPanel, PANEL_SHOWLOG, 0); break; } return 0; } int CVICALLBACK CB_BeatnoteSign (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: switch(control) { case PANEL_SIGN1: GetCtrlVal(panel, control, &Sign1); break; case PANEL_SIGN2: GetCtrlVal(panel, control, &Sign2); break; case PANEL_SIGN3: GetCtrlVal(panel, control, &Sign3); break; } break; } return 0; } int CVICALLBACK CB_SaveData (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: for (struct datafile *d = datafiles; d->data; d++) { if (d->control == control) GetCtrlVal(panel, control, &(d->write)); } break; } return 0; } int CVICALLBACK CB_RecenterInterval (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: GetCtrlVal(panel, control, &recenter.interval); break; } return 0; } int CVICALLBACK CB_RecenterChannel (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: switch (control) { case PANEL_RECENTER_LO: GetCtrlVal(panel, control, &recenter.enabled[LO]); break; case PANEL_RECENTER_HG: GetCtrlVal(panel, control, &recenter.enabled[HG]); break; case PANEL_RECENTER_SR: GetCtrlVal(panel, control, &recenter.enabled[SR]); break; } break; } return 0; } int CVICALLBACK CB_RecenterThreshold (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: switch (control) { case PANEL_RECENTER_THRESHOLD_LO: GetCtrlVal(panel, control, &recenter.threshold[LO]); break; case PANEL_RECENTER_THRESHOLD_HG: GetCtrlVal(panel, control, &recenter.threshold[HG]); break; case PANEL_RECENTER_THRESHOLD_SR: GetCtrlVal(panel, control, &recenter.threshold[SR]); break; } break; } return 0; } int CVICALLBACK CB_SrDatalogger (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: GetCtrlVal(panel, control, &datalogger.enabled); break; } return 0; } int CVICALLBACK CB_DedriftDDSFreq (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: GetCtrlVal(panel, control, &dedrift.fDDS); ad9956_set_w(&ad9956, dedrift.fDDS, dedrift.applied); break; } return 0; } // // N estimate // static void estimateN (void) { double nu, fbeat, frep, N; int sign; GetCtrlVal(EstimateNPanel, ESTIMATEN_FREQUENCY, &nu); GetCtrlVal(EstimateNPanel, ESTIMATEN_FREP, &frep); GetCtrlVal(EstimateNPanel, ESTIMATEN_FBEAT, &fbeat); GetCtrlVal(EstimateNPanel, ESTIMATEN_SIGN, &sign); N = (nu * 1.0e12 - sign * fbeat) / frep; SetCtrlVal(EstimateNPanel, ESTIMATEN_N, N); } int CVICALLBACK cb_onEstimateN (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { int visible; switch (event) { case EVENT_COMMIT: // reset N estimate SetCtrlVal(EstimateNPanel, ESTIMATEN_N, 0.0); // set current frep SetCtrlVal(EstimateNPanel, ESTIMATEN_FREP, 250e6 + Math1); switch (control) { case PANEL_ESTIMATE_N2: // expected frequency SetCtrlVal(EstimateNPanel, ESTIMATEN_FREQUENCY, HG_FREQUENCY); SetCtrlVal(EstimateNPanel, ESTIMATEN_WAVELENGTH, HG_WAVELENGTH); // sign SetCtrlVal(EstimateNPanel, ESTIMATEN_SIGN, (int)Sign2); // f_DDS SetCtrlVal(EstimateNPanel, ESTIMATEN_FDDS, ad9912.frequency[2]); // f_counter SetCtrlVal(EstimateNPanel, ESTIMATEN_FDDS, Ch2); // f_beat SetCtrlVal(EstimateNPanel, ESTIMATEN_FBEAT, ad9912.frequency[2] - Ch2); SetPanelAttribute(EstimateNPanel, ATTR_TITLE, "Estimate N_Hg"); SetPanelAttribute(EstimateNPanel, ATTR_CALLBACK_DATA, INT_TO_PTR(HG)); break; case PANEL_ESTIMATE_N3: // expected frequency SetCtrlVal(EstimateNPanel, ESTIMATEN_FREQUENCY, SR_FREQUENCY); SetCtrlVal(EstimateNPanel, ESTIMATEN_WAVELENGTH, SR_WAVELENGTH); // sign SetCtrlVal(EstimateNPanel, ESTIMATEN_SIGN, (int)Sign3); // f_DDS SetCtrlVal(EstimateNPanel, ESTIMATEN_FDDS, ad9912.frequency[3]); // f_counter SetCtrlVal(EstimateNPanel, ESTIMATEN_FDDS, Ch3); // f_beat SetCtrlVal(EstimateNPanel, ESTIMATEN_FBEAT, ad9912.frequency[3] - Ch3); SetPanelAttribute(EstimateNPanel, ATTR_TITLE, "Estimate N_Sr"); SetPanelAttribute(EstimateNPanel, ATTR_CALLBACK_DATA, INT_TO_PTR(SR)); break; } // display dialog GetPanelAttribute(EstimateNPanel, ATTR_VISIBLE , &visible); if (! visible) DisplayPanel(EstimateNPanel); // compute estimateN(); break; } return 0; } int CVICALLBACK cb_onEstimateNWaveleght (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { double wavelenght, frequency; switch (event) { case EVENT_COMMIT: GetCtrlVal(panel, control, &wavelenght); frequency = SPEED_OF_LIGHT / (wavelenght * 1.0e-9) / 1.0e12; SetCtrlVal(panel, ESTIMATEN_FREQUENCY, frequency); estimateN(); break; } return 0; } int CVICALLBACK cb_onEstimateNFrequency (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { double wavelenght, frequency; switch (event) { case EVENT_COMMIT: GetCtrlVal(panel, control, &frequency); wavelenght = SPEED_OF_LIGHT / (frequency * 1.0e12) / 1.0e-9; SetCtrlVal(panel, ESTIMATEN_WAVELENGTH, wavelenght); estimateN(); break; } return 0; } int CVICALLBACK cb_onEstimateNChange (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: estimateN(); break; } return 0; } int CVICALLBACK cb_onEstimateNClose (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { int visible; switch (event) { case EVENT_COMMIT: GetPanelAttribute(panel, ATTR_VISIBLE, &visible); if (visible) HidePanel(panel); break; } return 0; } int CVICALLBACK cb_onEstimateNSet (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { void *v; double n; int estimate = 0; switch (event) { case EVENT_COMMIT: GetPanelAttribute(panel, ATTR_CALLBACK_DATA, &v); estimate = PTR_TO_INT(v); switch (estimate) { case HG: GetCtrlVal(panel, ESTIMATEN_N, &n); N2 = round(n); SetCtrlVal(MainPanel, PANEL_N2, N2); break; case SR: GetCtrlVal(panel, ESTIMATEN_N, &n); N3 = round(n); SetCtrlVal(MainPanel, PANEL_N3, N3); break; } HidePanel(panel); break; } return 0; }