Mercurial > hg > fxanalyse
view FXAnalyse.c @ 84:c03263186dd7
Rework and cleanup N measurement panels handling. Move logs to dedicated panel.
author | Daniele Nicolodi <daniele.nicolodi@obspm.fr> |
---|---|
date | Wed, 20 Mar 2013 16:36:36 +0100 |
parents | 47860259afe2 |
children | 6ac1d3de1ae2 |
line wrap: on
line source
#include <utility.h> #include <ansi_c.h> #include <cvirte.h> #include <userint.h> #include <formatio.h> #include <string.h> #include <future.h> #include "YLCStuff.h" #include "FXAnalyse.h" #include "Plot.h" #include "Allan.h" #include "DDSBes.h" #include "DDS4xAD9912.h" #include "DDS_Fox.h" #include "muParserDLL.h" #define FXLINELENGTH 123 #define LOGFILEPATH "C:\\Femto\\Software\\FXQE80" #define DATAFOLDER "Z:\\Measures-2013" #define DEDRIFT_DDS_FREQUENCY 70000000 // panel handling stuff static PanelHandle MainPanel; static PanelHandle CalcNPanel; static PanelHandle EstimateN3Panel; static PanelHandle LoggingPanel; char LogFileName[MAX_PATHNAME_LEN]; double utc = 0; double mjd = 0; double Ch1, Ch2, Ch3, Ch4; double Math1, Math2, Math3, Math4, Math5; double N1, N2, N3, N4; Plot_Data PlotCh1, PlotCh2, PlotCh3, PlotCh4, PlotMath1, PlotMath2, PlotMath3, PlotMath4, PlotMath5 ; Allan_Data AllanCh1, AllanCh2, AllanCh3, AllanCh4, AllanMath1, AllanMath2, AllanMath3, AllanMath4, AllanMath5 ; // 1xAD9956 DDS box DDSParameter DDS1xAD9956; // 4xAD9912 DDS box DDS4xAD9912_Data DDS4xAD9912; muParserHandle_t MathParser1, MathParser2, MathParser3, MathParser4, MathParser5; int Acquiring = FALSE; long OldLogFilePtr = 0; double Ndiv = 8.0; int settling = 0; enum { MEASURING_N_NONE, MEASURING_N_Lo, MEASURING_N_Hg, MEASURING_N_Sr, }; int measuring = MEASURING_N_NONE; enum { N_MEASUREMENT_NONE, N_MEASUREMENT_INIT, N_MEASUREMENT_SLOPE, N_MEASUREMENT_ADJUST_FREQ_PLUS, N_MEASUREMENT_FREP_PLUS, N_MEASUREMENT_ADJUST_FREQ_MINUS, N_MEASUREMENT_FREP_MINUS, }; int Measuring_1 = N_MEASUREMENT_NONE; int Measuring_2 = N_MEASUREMENT_NONE; int Measuring_3 = N_MEASUREMENT_NONE; double FrequDDS1=110000000.0, FrequDDS4=110000000.0; double Slope_1=0.0, Slope_2=0.0, Slope_3=0.0, Beatslope_2=0.0; double SlopeTime1=40.0, SlopeTime2=40.0, SlopeTime3=40.0; double Ch4Slope = 0.0; double N_1=0.0, N_2=0.0, N_3=0.0; double DeltaT_1=20.0, DeltakHz_1=500.0, t1_1=0.0, t2_1=0.0, t3_1=0.0, Frepplus_1=0.0, Frepminus_1=0.0; double DeltaT_2=20.0, DeltakHz_2=500.0, t1_2=0.0, t2_2=0.0, t3_2=0.0, Frepplus_2=0.0, Frepminus_2=0.0; double DeltaT_3=20.0, DeltakHz_3=500.0, t1_3=0.0, t2_3=0.0, t3_3=0.0, Frepplus_3=0.0, Frepminus_3=0.0; int n_1=0, n_2=0, n_3=0; double FrequencyDDSBesInit = 0.0; double FrequencyDDS3Init = 0.0; double DeltaDDS3=0.0,Delta10K_Plus=0.0,Delta10K_Minus=0.0; double Nu1=0.0, Nu2= 200000-147000+282143746.557455e6; double Step1=800000.0,Step2=800000.0; double Ch4Plus=0.0,Ch4Minus=0.0; double Frequencystep1=10000.0, tbegin1=0.0, Frepbefore1=0.0, Frequency1=0.0; double Frequencystep2=10.0, tbegin2=0.0, Frepbefore2=0.0, Ch2before=0.0, Frequency2=0.0; double Frequencystep3=100000.0, tbegin3=0.0, Frepbefore3=0.0, Frequency3=0.0; volatile bool Getsign1=FALSE,Getsign2=FALSE,Getsign3=FALSE; double Signe1=1.0,Signe2=1.0,Signe3=0.0; // slope cancelling int SlopeMeasuring = FALSE; int StopSlopeCancellingOnUnlocked = TRUE; double TimetoSlope = 60.0; double SlopeMeasuringTimeBegin = 0.0; double appliedSlope = 0.0; // currently applied frequency dedrifiting slope double limitotakoff=70.0; int ratio=10; //Recentre la frequence tous les ratios int FrequCorrec = FALSE, KeepFrequ = TRUE, KeepSlope = TRUE; int Nratio = -1; double MoyMath2 = 0.0, CenterFrequencyCh2 = 0.0; int CenterFrequencyCh2ToDetermine = FALSE; enum { SLOPE_REFERENCE_MICROWAVE = 0, SLOPE_REFERENCE_HG_CAVITY = 1, }; int invertSlopeSign = 0; int slopeReference = SLOPE_REFERENCE_MICROWAVE; int KeepCentering = FALSE; double Timetorecenter275K = 3600.0 * 10; double Timetorecenter10K = 3600.0 * 3; double CenteringTimeBegin275K = 0.0; double CenteringTimeBegin10K = 0.0; struct stat { int samples; double mean; double slope; double previous; }; void stat_zero(struct stat *s) { s->samples = 0; s->mean = 0.0; s->slope = 0.0; s->previous = 0.0; } void stat_accumulate(struct stat *s, double value) { s->samples += 1; if (s->samples > 1) s->slope = (s->slope * (s->samples - 2) + 6 * (value - s->mean) / s->samples) / (s->samples + 1); s->mean = ((s->samples - 1) * s->mean + value) / s->samples; s->previous = value; } struct stat stat_math1, stat_ch2, stat_ch4, freq; #define MIN(x, y) (x) < (y) ? (x) : (y) void logmsg(const char *frmt, ...) { char msg[1024]; int len = 0; // timestamp len += sprintf(msg, "%014.3f ", utc); time_t now = time(NULL); struct tm *t = localtime(&now); len += strftime(msg + len, sizeof(msg) - len, "%d-%m-%Y %H:%M:%S ", t); // message va_list args; va_start(args, frmt); len += vsnprintf(msg + len, sizeof(msg) - len, frmt, args); va_end(args); // add newline len = MIN(len, sizeof(msg) - 2); msg[len] = '\n'; msg[len + 1] = '\0'; // display message SetCtrlVal(LoggingPanel, LOGGING_LOGGING, msg); } muParserHandle_t initMathParser() { muParserHandle_t parser = mupCreate(); mupDefineOprtChars(parser, "abcdefghijklmnopqrstuvwxyzµ" "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "+-*^/?<>=#!$%&|~'_"); mupDefineVar(parser, "UTC", &utc); mupDefineVar(parser, "MJD", &mjd); mupDefineVar(parser, "Ch1", &Ch1); mupDefineVar(parser, "Ch2", &Ch2); mupDefineVar(parser, "Ch3", &Ch3); mupDefineVar(parser, "Ch4", &Ch4); mupDefineVar(parser, "DDS1", &(DDS4xAD9912.Frequency1)); mupDefineVar(parser, "DDS2", &(DDS4xAD9912.Frequency2)); mupDefineVar(parser, "DDS3", &(DDS4xAD9912.Frequency3)); mupDefineVar(parser, "DDS4", &(DDS4xAD9912.Frequency4)); mupDefineVar(parser, "N1", &N1); mupDefineVar(parser, "N2", &N2); mupDefineVar(parser, "N3", &N3); mupDefineVar(parser, "Nu1", &Nu1); mupDefineVar(parser, "Nu2", &Nu2); mupDefineVar(parser, "DeltaDDS3", &DeltaDDS3); mupDefineVar(parser, "Signe1", &Signe1); mupDefineVar(parser, "Signe2", &Signe2); mupDefineVar(parser, "Ndiv", &Ndiv); mupDefinePostfixOprt(parser, "P", &Peta, 1); mupDefinePostfixOprt(parser, "T", &Tera, 1); mupDefinePostfixOprt(parser, "G", &Giga, 1); mupDefinePostfixOprt(parser, "M", &Mega, 1); mupDefinePostfixOprt(parser, "k", &kilo, 1); mupDefinePostfixOprt(parser, "m", &milli, 1); mupDefinePostfixOprt(parser, "u", µ, 1); mupDefinePostfixOprt(parser, "µ", µ, 1); mupDefinePostfixOprt(parser, "n", &nano, 1); mupDefinePostfixOprt(parser, "p", &pico, 1); mupDefinePostfixOprt(parser, "f", &femto, 1); return parser; } void writeData(char *folder, char *name, char *id, char *date, char *time, double utc, double value) { char line[1024]; char filename[FILENAME_MAX]; // construct filename in the form folder\\id-name.txt snprintf(filename, sizeof(filename), "%s\\%s-%s.txt", folder, id, name); int fd = OpenFile(filename, VAL_WRITE_ONLY, VAL_APPEND, VAL_ASCII); Fmt(line, "%s\t%s\t%f[p3]\t%f[p3]", date, time, utc, value); WriteLine(fd, line, -1); CloseFile(fd); } int main (int argc, char *argv[]) { double frequency; char expr[1024]; if (InitCVIRTE (0, argv, 0) == 0) return -1; if ((MainPanel = LoadPanel (0, "FXAnalyse.uir", PANEL)) < 0) return -1; if ((CalcNPanel = LoadPanel (MainPanel, "FXAnalyse.uir", CALCN)) < 0) return -1; if ((EstimateN3Panel = LoadPanel (MainPanel, "FXAnalyse.uir", ESTIMATEN3)) < 0) return -1; if ((LoggingPanel = LoadPanel (0, "FXAnalyse.uir", LOGGING)) < 0) return -1; DisplayPanel (MainPanel); // initialize 4x AD9959 DDS box DDS4xAD9912_Reset(&DDS4xAD9912); GetCtrlVal(MainPanel, PANEL_DDS1, &frequency); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, frequency); GetCtrlVal(MainPanel, PANEL_DDS2, &frequency); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 2, frequency); GetCtrlVal(MainPanel, PANEL_DDS3, &frequency); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 3, frequency); GetCtrlVal(MainPanel, PANEL_DDS4, &frequency); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 4, frequency); // initialyze 1x AD9956 DDS box DDSFox_Initialize(&DDS1xAD9956, "145.238.205.58", 6665, DEDRIFT_DDS_FREQUENCY); Ch1 = Ch2 = Ch3 = Ch4 = 0.0; GetCtrlVal(MainPanel, PANEL_N1CHOICE, &N1); GetCtrlVal(MainPanel, PANEL_N2CHOICE, &N2); GetCtrlVal(MainPanel, PANEL_N3CHOICE, &N3); MathParser1 = initMathParser(); GetCtrlVal(MainPanel, PANEL_MATHSTRING1, expr); mupSetExpr(MathParser1, expr); MathParser2 = initMathParser(); mupDefineVar(MathParser2, "Math1", &Math1); mupDefineVar(MathParser2, "DDS", &(DDS4xAD9912.Frequency1)); GetCtrlVal(MainPanel, PANEL_MATHSTRING2, expr); mupSetExpr(MathParser2, expr); MathParser3 = initMathParser(); mupDefineVar(MathParser3, "Math1", &Math1); mupDefineVar(MathParser3, "Math2", &Math2); mupDefineVar(MathParser3, "DDS", &(DDS4xAD9912.Frequency2)); GetCtrlVal(MainPanel, PANEL_MATHSTRING3, expr); mupSetExpr(MathParser3, expr); MathParser4 = initMathParser(); mupDefineVar(MathParser4, "Math1", &Math1); mupDefineVar(MathParser4, "Math2", &Math2); mupDefineVar(MathParser4, "Math3", &Math3); GetCtrlVal(MainPanel, PANEL_MATHSTRING4, expr); mupSetExpr(MathParser4, expr); MathParser5 = initMathParser(); mupDefineVar(MathParser5, "Math1", &Math1); mupDefineVar(MathParser5, "Math2", &Math2); mupDefineVar(MathParser5, "Math3", &Math3); mupDefineVar(MathParser5, "Math4", &Math4); GetCtrlVal(MainPanel, PANEL_MATHSTRING5, expr); mupSetExpr(MathParser5, expr); RunUserInterface(); DiscardPanel(MainPanel); return 0; } void OnCloseViewPanel(int panel){ if (panel==PlotCh1.PlotPanel) { SetCtrlVal(MainPanel,PANEL_CHECKBOX_FREQ1PLOT, FALSE) ; } ; if (panel==PlotCh2.PlotPanel) { SetCtrlVal(MainPanel,PANEL_CHECKBOX_FREQ2PLOT, FALSE) ; } ; if (panel==PlotCh3.PlotPanel) { SetCtrlVal(MainPanel,PANEL_CHECKBOX_FREQ3PLOT, FALSE) ; } ; if (panel==PlotCh4.PlotPanel) { SetCtrlVal(MainPanel,PANEL_CHECKBOX_FREQ4PLOT, FALSE) ; } ; if (panel==PlotMath1.PlotPanel) { SetCtrlVal(MainPanel,PANEL_CHECKBOX_MATH1PLOT, FALSE) ; } ; if (panel==PlotMath2.PlotPanel) { SetCtrlVal(MainPanel,PANEL_CHECKBOX_MATH2PLOT, FALSE) ; } ; if (panel==PlotMath3.PlotPanel) { SetCtrlVal(MainPanel,PANEL_CHECKBOX_MATH3PLOT, FALSE) ; } ; if (panel==PlotMath4.PlotPanel) { SetCtrlVal(MainPanel,PANEL_CHECKBOX_MATH4PLOT, FALSE) ; } ; if (panel==PlotMath5.PlotPanel) { SetCtrlVal(MainPanel,PANEL_CHECKBOX_MATH5PLOT, FALSE) ; } ; if (panel==AllanCh1.AllanPanel) { SetCtrlVal(MainPanel,PANEL_CHECKBOX_FREQ1ALLAN, FALSE) ; } ; if (panel==AllanCh2.AllanPanel) { SetCtrlVal(MainPanel,PANEL_CHECKBOX_FREQ2ALLAN, FALSE) ; } ; if (panel==AllanCh3.AllanPanel) { SetCtrlVal(MainPanel,PANEL_CHECKBOX_FREQ3ALLAN, FALSE) ; } ; if (panel==AllanCh4.AllanPanel) { SetCtrlVal(MainPanel,PANEL_CHECKBOX_FREQ4ALLAN, FALSE) ; } ; if (panel==AllanMath1.AllanPanel) { SetCtrlVal(MainPanel,PANEL_CHECKBOX_MATH1ALLAN, FALSE) ; } ; if (panel==AllanMath2.AllanPanel) { SetCtrlVal(MainPanel,PANEL_CHECKBOX_MATH2ALLAN, FALSE) ; } ; if (panel==AllanMath3.AllanPanel) { SetCtrlVal(MainPanel,PANEL_CHECKBOX_MATH3ALLAN, FALSE) ; } ; if (panel==AllanMath4.AllanPanel) { SetCtrlVal(MainPanel,PANEL_CHECKBOX_MATH4ALLAN, FALSE) ; } ; if (panel==AllanMath5.AllanPanel) { SetCtrlVal(MainPanel,PANEL_CHECKBOX_MATH5ALLAN, FALSE) ; } ; return ; } int CVICALLBACK QuitCallback (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: QuitUserInterface(0); mupRelease(MathParser1); mupRelease(MathParser2); mupRelease(MathParser3); mupRelease(MathParser4); mupRelease(MathParser5); break; } return 0; } int CVICALLBACK CB_OnEventMain(int panel, int event, void *callbackData, int eventData1, int eventData2) { int ActiveControl ; int StepIndex ; double Step ; switch (event) { case EVENT_KEYPRESS: switch (eventData1) // ie the code of the key which has been stroke { case VAL_RIGHT_ARROW_VKEY : ActiveControl = GetActiveCtrl(panel); if (ActiveControl==PANEL_DDS1 || ActiveControl==PANEL_DDS1STEP) { GetCtrlIndex(MainPanel, PANEL_DDS1STEP, &StepIndex); if (StepIndex<14){ SetCtrlIndex(MainPanel, PANEL_DDS1STEP, ++StepIndex) ; GetCtrlVal(MainPanel, PANEL_DDS1STEP, &Step); SetCtrlAttribute(MainPanel, PANEL_DDS1, ATTR_INCR_VALUE, Step) ; }; }; if (ActiveControl==PANEL_DDS2 || ActiveControl==PANEL_DDS2STEP) { GetCtrlIndex(MainPanel, PANEL_DDS2STEP, &StepIndex); if (StepIndex<14){ SetCtrlIndex(MainPanel, PANEL_DDS2STEP, ++StepIndex) ; GetCtrlVal(MainPanel, PANEL_DDS2STEP, &Step); SetCtrlAttribute(MainPanel, PANEL_DDS2, ATTR_INCR_VALUE, Step) ; }; }; if (ActiveControl==PANEL_DDS3|| ActiveControl==PANEL_DDS3STEP) { GetCtrlIndex(MainPanel, PANEL_DDS3STEP, &StepIndex); if (StepIndex<14){ SetCtrlIndex(MainPanel, PANEL_DDS3STEP, ++StepIndex) ; GetCtrlVal(MainPanel, PANEL_DDS3STEP, &Step); SetCtrlAttribute(MainPanel, PANEL_DDS3, ATTR_INCR_VALUE, Step) ; }; }; if (ActiveControl==PANEL_DDS4|| ActiveControl==PANEL_DDS4STEP) { GetCtrlIndex(MainPanel, PANEL_DDS4STEP, &StepIndex); if (StepIndex<14){ SetCtrlIndex(MainPanel, PANEL_DDS4STEP, ++StepIndex) ; GetCtrlVal(MainPanel, PANEL_DDS4STEP, &Step); SetCtrlAttribute(MainPanel, PANEL_DDS4, ATTR_INCR_VALUE, Step) ; }; }; break; case VAL_LEFT_ARROW_VKEY : ActiveControl = GetActiveCtrl(panel); if (ActiveControl==PANEL_DDS1 || ActiveControl==PANEL_DDS1STEP) { GetCtrlIndex(MainPanel, PANEL_DDS1STEP, &StepIndex); if (StepIndex>0){ SetCtrlIndex(MainPanel, PANEL_DDS1STEP, --StepIndex) ; GetCtrlVal(MainPanel, PANEL_DDS1STEP, &Step); SetCtrlAttribute(MainPanel, PANEL_DDS1, ATTR_INCR_VALUE, Step) ; }; }; if (ActiveControl==PANEL_DDS2 || ActiveControl==PANEL_DDS2STEP) { GetCtrlIndex(MainPanel, PANEL_DDS2STEP, &StepIndex); if (StepIndex>0){ SetCtrlIndex(MainPanel, PANEL_DDS2STEP, --StepIndex) ; GetCtrlVal(MainPanel, PANEL_DDS2STEP, &Step); SetCtrlAttribute(MainPanel, PANEL_DDS2, ATTR_INCR_VALUE, Step) ; }; }; if (ActiveControl==PANEL_DDS3 || ActiveControl==PANEL_DDS3STEP) { GetCtrlIndex(MainPanel, PANEL_DDS3STEP, &StepIndex); if (StepIndex>0){ SetCtrlIndex(MainPanel, PANEL_DDS3STEP, --StepIndex) ; GetCtrlVal(MainPanel, PANEL_DDS3STEP, &Step); SetCtrlAttribute(MainPanel, PANEL_DDS3, ATTR_INCR_VALUE, Step) ; }; }; if (ActiveControl==PANEL_DDS4 || ActiveControl==PANEL_DDS4STEP) { GetCtrlIndex(MainPanel, PANEL_DDS4STEP, &StepIndex); if (StepIndex>0){ SetCtrlIndex(MainPanel, PANEL_DDS4STEP, --StepIndex) ; GetCtrlVal(MainPanel, PANEL_DDS4STEP, &Step); SetCtrlAttribute(MainPanel, PANEL_DDS4, ATTR_INCR_VALUE, Step) ; }; }; break; case VAL_F2_VKEY : SetActiveCtrl(MainPanel, PANEL_DDS1); break; case VAL_F3_VKEY : SetActiveCtrl(MainPanel, PANEL_DDS2); break; case VAL_F4_VKEY : SetActiveCtrl(MainPanel, PANEL_DDS3); break; case VAL_F5_VKEY : SetActiveCtrl(MainPanel, PANEL_DDS4); break; }; break; } return 0; } void CurrentFileName(char *fname) { char day[3], month[3], year[3]; char *date = DateStr(); Scan(date, "%s>%s[w2]-%s[w2]-20%s[w2]", month, day, year); Fmt(fname, "%s<%s\\%s%s%s_Frequ.txt", LOGFILEPATH, year, month, day); } int CVICALLBACK CB_OnStart (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: if (Acquiring) { PlotCh1.IndexPoint = 0; PlotCh2.IndexPoint = 0; PlotCh3.IndexPoint = 0; PlotCh4.IndexPoint = 0; PlotMath1.IndexPoint = 0; PlotMath2.IndexPoint = 0; PlotMath3.IndexPoint = 0; PlotMath4.IndexPoint = 0; PlotMath5.IndexPoint = 0; Allan_Reset(&AllanCh1); Allan_Reset(&AllanCh2); Allan_Reset(&AllanCh3); Allan_Reset(&AllanCh4); Allan_Reset(&AllanMath1); Allan_Reset(&AllanMath2); Allan_Reset(&AllanMath3); Allan_Reset(&AllanMath4); Allan_Reset(&AllanMath5); } Acquiring = TRUE; SetCtrlAttribute(MainPanel, PANEL_STARTBUTTON, ATTR_LABEL_TEXT, "__RESET"); CurrentFileName(LogFileName); GetFileInfo(LogFileName, &OldLogFilePtr); OldLogFilePtr -= OldLogFilePtr%FXLINELENGTH + FXLINELENGTH - 2; logmsg("Start"); break; } return 0; } int CVICALLBACK CB_OnStop (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: Acquiring = FALSE ; SetCtrlAttribute(MainPanel, PANEL_STARTBUTTON, ATTR_LABEL_TEXT, "__START"); break; } return 0; } int CVICALLBACK CB_OnTimer (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { int LogFile; long LogFileSize; char LineBuffer[FXLINELENGTH+10] = "\r\n_1 "; char TimeTag[] = "100103 000000.000"; // K+K time tag meaning here 2010 january the 3rd at 00:00:00.000 char Date[] = "03/01/2010" ; char Time[] = "00:00:00.000" ; char Year[] = "2010"; char ShortYear[] = "10"; // the last 2 digits of calendar year only char Month[] = "01"; char Day[] = "03"; char Hour[] = "00"; char Min[] = "00" ; char Sec[] = "00.000"; struct tm LocalTime ; time_t utcTime; int BoxChecked = FALSE; switch (event) { case EVENT_TIMER_TICK: if (! Acquiring) break; GetFileInfo(LogFileName, &LogFileSize); if (LogFileSize > OldLogFilePtr+2*FXLINELENGTH-2) { // if a complete newline has been written SuspendTimerCallbacks(); // Open Log file and get to the beginning of newly completed line LogFile = OpenFile(LogFileName, VAL_READ_ONLY, VAL_OPEN_AS_IS, VAL_ASCII); OldLogFilePtr += FXLINELENGTH; SetFilePtr(LogFile, OldLogFilePtr, 0); // return the last complete string from the log file and scan it for date and time information // first, the time tag, and store it in various formats ReadFile(LogFile, TimeTag, 17); CopyBytes(Date,0,TimeTag,4,2); CopyBytes(Date,3,TimeTag,2,2); CopyBytes(Date,8,TimeTag,0,2); CopyBytes(Time,0,TimeTag,7,2); CopyBytes(Time,3,TimeTag,9,2); CopyBytes(Time,6,TimeTag,11,6); SetCtrlVal(MainPanel, PANEL_DATE, Date); SetCtrlVal(MainPanel, PANEL_TIME, Time); CopyBytes(Year,2,TimeTag,0,2); // first 2 bytes of year string remains "20" CopyBytes(ShortYear,0,TimeTag,0,2); CopyBytes(Month,0,TimeTag,2,2); CopyBytes(Day,0,TimeTag,4,2); CopyBytes(Hour,0,TimeTag,7,2); CopyBytes(Min,0,TimeTag,9,2); CopyBytes(Sec,0,TimeTag,11,6); Fmt(&LocalTime.tm_year, "%d<%s", Year); Fmt(&LocalTime.tm_mon, "%d<%s", Month); Fmt(&LocalTime.tm_mday, "%d<%s", Day); Fmt(&LocalTime.tm_hour, "%d<%s", Hour); Fmt(&LocalTime.tm_min, "%d<%s", Min); Fmt(&LocalTime.tm_sec, "%d<%s", "00"); // special case to handle non integer number of UTC seconds LocalTime.tm_hour += 0; LocalTime.tm_min -= 0; LocalTime.tm_sec -= 0; LocalTime.tm_mon -= 1; // january is month 0 for tm struct LocalTime.tm_year -= 1900; // year is number of years since 1900 for tm struct LocalTime.tm_isdst = -1; // daylight saving flag MUST be set to -1 (unallocated is bugging and +1 is making 1 hour error in summer) utcTime = mktime (&LocalTime); utc = (double) utcTime + strtod(Sec,NULL); mjd=utc/86400.; //nb de jours depuis l'origine d'UTC (01/01/1900 à 00h00 GMT) mjd+=15020; //date MJD de la date origine d'UTC SetCtrlVal(MainPanel, PANEL_UTC, utc); SetCtrlVal(MainPanel, PANEL_MJD, mjd); // scan the line for counters's channels information ReadLine(LogFile, LineBuffer, FXLINELENGTH+9); CloseFile(LogFile); Scan(LineBuffer, "%f%f%f%f", &Ch1, &Ch2, &Ch3, &Ch4); Ch1 = 1000*Ch1; Ch2 = 1000*Ch2; Ch3 = 1000*Ch3; Ch4 = 1000*Ch4; SetCtrlVal(MainPanel, PANEL_FREQ1, Ch1); SetCtrlVal(MainPanel, PANEL_FREQ2, Ch2); SetCtrlVal(MainPanel, PANEL_FREQ3, Ch3); SetCtrlVal(MainPanel, PANEL_FREQ4, Ch4); SetCtrlVal(MainPanel, PANEL_CENTERFREQUENCY, CenterFrequencyCh2); // Treat data Math1 = mupEval(MathParser1); SetCtrlVal(MainPanel,PANEL_MATH1, Math1); Math2 = mupEval(MathParser2); SetCtrlVal(MainPanel,PANEL_MATH2, Math2); Math3 = mupEval(MathParser3); SetCtrlVal(MainPanel,PANEL_MATH3, Math3); Math4 = mupEval(MathParser4); SetCtrlVal(MainPanel,PANEL_MATH4, Math4); Math5 = mupEval(MathParser5); SetCtrlVal(MainPanel,PANEL_MATH5, Math5); // Plot Data and calculus if required GetCtrlVal(MainPanel, PANEL_CHECKBOX_FREQ1PLOT, &BoxChecked); if (BoxChecked) { Plot_AddFrequency(&PlotCh1, Ch1); } GetCtrlVal(MainPanel, PANEL_CHECKBOX_FREQ1ALLAN, &BoxChecked); if (BoxChecked) { Allan_AddFrequency(&AllanCh1, Ch1); } GetCtrlVal(MainPanel, PANEL_CHECKBOX_FREQ2PLOT, &BoxChecked); if (BoxChecked) { Plot_AddFrequency(&PlotCh2, Ch2); } GetCtrlVal(MainPanel, PANEL_CHECKBOX_FREQ2ALLAN, &BoxChecked); if (BoxChecked) { Allan_AddFrequency(&AllanCh2, Ch2); } GetCtrlVal(MainPanel, PANEL_CHECKBOX_FREQ3PLOT, &BoxChecked); if (BoxChecked) { Plot_AddFrequency(&PlotCh3, Ch3); } GetCtrlVal(MainPanel, PANEL_CHECKBOX_FREQ3ALLAN, &BoxChecked); if (BoxChecked) { Allan_AddFrequency(&AllanCh3, Ch3); } GetCtrlVal(MainPanel, PANEL_CHECKBOX_FREQ4PLOT, &BoxChecked); if (BoxChecked) { Plot_AddFrequency(&PlotCh4, Ch4); } GetCtrlVal(MainPanel, PANEL_CHECKBOX_FREQ4ALLAN, &BoxChecked); if (BoxChecked) { Allan_AddFrequency(&AllanCh4, Ch4); } GetCtrlVal(MainPanel, PANEL_CHECKBOX_MATH1PLOT, &BoxChecked); if (BoxChecked) { Plot_AddFrequency(&PlotMath1, Math1); } GetCtrlVal(MainPanel, PANEL_CHECKBOX_MATH1ALLAN, &BoxChecked); if (BoxChecked) { Allan_AddFrequency(&AllanMath1, Math1); } GetCtrlVal(MainPanel, PANEL_CHECKBOX_MATH2PLOT, &BoxChecked); if (BoxChecked) { Plot_AddFrequency(&PlotMath2, Math2); } GetCtrlVal(MainPanel, PANEL_CHECKBOX_MATH2ALLAN, &BoxChecked); if (BoxChecked) { Allan_AddFrequency(&AllanMath2, Math2); } GetCtrlVal(MainPanel, PANEL_CHECKBOX_MATH3PLOT, &BoxChecked); if (BoxChecked) { Plot_AddFrequency(&PlotMath3, Math3); } GetCtrlVal(MainPanel, PANEL_CHECKBOX_MATH3ALLAN, &BoxChecked); if (BoxChecked) { Allan_AddFrequency(&AllanMath3, Math3); } GetCtrlVal(MainPanel, PANEL_CHECKBOX_MATH4PLOT, &BoxChecked); if (BoxChecked) { Plot_AddFrequency(&PlotMath4, Math4); } GetCtrlVal(MainPanel, PANEL_CHECKBOX_MATH4ALLAN, &BoxChecked); if (BoxChecked) { Allan_AddFrequency(&AllanMath4, Math4); } GetCtrlVal(MainPanel, PANEL_CHECKBOX_MATH5PLOT, &BoxChecked); if (BoxChecked) { Plot_AddFrequency(&PlotMath5, Math5); } GetCtrlVal(MainPanel, PANEL_CHECKBOX_MATH5ALLAN, &BoxChecked); if (BoxChecked) { Allan_AddFrequency(&AllanMath5, Math5); } // Calcul de N switch (Measuring_1) { case N_MEASUREMENT_NONE: // not measuring break; case N_MEASUREMENT_INIT: // initialization step // set DDS1 to nominal frequency SetCtrlVal(MainPanel, PANEL_DDS1, FrequDDS1); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, FrequDDS1); GetCtrlVal(MainPanel, PANEL_DDS2, &FrequencyDDSBesInit); t2_1 = t3_1 = 0.0; t1_1 = utc; stat_zero(&stat_math1); stat_zero(&stat_ch4); // next step Measuring_1 += 1; break; case N_MEASUREMENT_SLOPE: // slope measurement stat_accumulate(&stat_math1, Math1); stat_accumulate(&stat_ch4, Ch4); if ((utc - t1_1) > SlopeTime1) { Slope_1 = stat_math1.slope; Ch4Slope = stat_ch4.slope; SetCtrlVal(CalcNPanel, CALCN_SLOPE, Slope_1); // frep positive step DDS4xAD9912_FrequencyRampe(&DDS4xAD9912,1, FrequDDS1,(FrequDDS1+DeltakHz_1*1000), Step1/Ndiv); SetCtrlVal(MainPanel, PANEL_DDS1, (FrequDDS1+DeltakHz_1*1000)); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, (FrequDDS1+DeltakHz_1*1000)); // allow counter to settle settling = 3; // next step Measuring_1 += 1; } break; case N_MEASUREMENT_ADJUST_FREQ_PLUS: case N_MEASUREMENT_ADJUST_FREQ_MINUS: // adjust DDS frequency to keep beatnote within the bandpass filter if (settling > 0) { settling--; break; } double fDDS2; GetCtrlVal(MainPanel, PANEL_DDS2, &fDDS2); fDDS2 += 275000 - Ch4; SetCtrlVal(MainPanel, PANEL_DDS2, fDDS2); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 2, fDDS2); // allow counter to settle settling = 3; // next step Measuring_1 += 1; break; case N_MEASUREMENT_FREP_PLUS: // frep positive step if (settling > 0) { settling--; break; } if (t2_1 == 0.0) t2_1 = utc; Frepplus_1 = Frepplus_1 + Math1 - Slope_1 * (utc - t2_1); Ch4Plus = Ch4Plus + Ch4 - Ch4Slope * (utc - t2_1); n_1 += 1; if ((utc - t2_1) > DeltaT_1) { Frepplus_1 = Frepplus_1 / n_1; Ch4Plus = Ch4Plus / n_1; n_1 = 0; // frep negative step DDS4xAD9912_FrequencyRampe(&DDS4xAD9912,1, (FrequDDS1+DeltakHz_1*1000),(FrequDDS1-DeltakHz_1*1000), Step1/Ndiv); SetCtrlVal(MainPanel, PANEL_DDS1, (FrequDDS1-DeltakHz_1*1000)); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, (FrequDDS1-DeltakHz_1*1000)); // allow counter to settle settling = 3; // next step Measuring_1 += 1; } break; case N_MEASUREMENT_FREP_MINUS: // frep negative step if (settling > 0) { settling--; break; } if (t3_1 == 0.0) t3_1 = utc; Frepminus_1 = Frepminus_1 + Math1 - Slope_1 * (utc - t3_1); Ch4Minus = Ch4Minus + Ch4 - Ch4Slope * (utc - t3_1); n_1 += 1; if ((utc - t3_1) > DeltaT_1) { Frepminus_1 = Frepminus_1 / n_1; Ch4Minus = Ch4Minus / n_1; n_1 = 0; // compute N1 N_1 = Signe1 * (2*Ndiv * DeltakHz_1 * 1000)/(Frepminus_1 - Frepplus_1 - Slope_1 * (t3_1 - t2_1)); SetCtrlVal(CalcNPanel, CALCN_N, N_1); t1_1 = 0.0; t2_1 = 0.0; t3_1 = 0.0; Frepminus_1 = 0.0; Frepplus_1 = 0.0; // back to nominal frep DDS4xAD9912_FrequencyRampe(&DDS4xAD9912, 1, FrequDDS1-DeltakHz_1*1000,FrequDDS1, Step1/Ndiv ); SetCtrlVal(MainPanel, PANEL_DDS1, FrequDDS1); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, FrequDDS1); SetCtrlVal(MainPanel, PANEL_DDS2, FrequencyDDSBesInit); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 2, FrequencyDDSBesInit); // done Measuring_1 = N_MEASUREMENT_NONE; } break; } switch (Measuring_2) { case N_MEASUREMENT_NONE: // not measuring break; case N_MEASUREMENT_INIT: // initialization step // set DDS1 to nominal frequency SetCtrlVal(MainPanel, PANEL_DDS1, FrequDDS1); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, FrequDDS1); GetCtrlVal(MainPanel, PANEL_DDS2, &FrequencyDDSBesInit); GetCtrlVal(MainPanel, PANEL_DDS3, &FrequencyDDS3Init); t1_2 = utc; stat_zero(&stat_math1); stat_zero(&stat_ch2); Nu1 = N1 * (250000000 + Math1); // next step Measuring_2 += 1; break; case N_MEASUREMENT_SLOPE: // slope measurement stat_accumulate(&stat_math1, Math1); stat_accumulate(&stat_ch2, Ch2); if ((utc - t1_2) > SlopeTime2) { Slope_2 = stat_math1.slope; Beatslope_2 = stat_ch2.slope; SetCtrlVal(CalcNPanel, CALCN_SLOPE, Beatslope_2); // frep positive step double fDDS1 = FrequDDS1 + DeltakHz_2 * 1000; printf("fDDS1 = %g\n", fDDS1); DDS4xAD9912_FrequencyRampe(&DDS4xAD9912,1, FrequDDS1, fDDS1, Step2/Ndiv); SetCtrlVal(MainPanel, PANEL_DDS1, fDDS1); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, fDDS1); // adjust DDS3 to keep beatnote within the bandpass filter. prediction double fDDS3 = FrequencyDDS3Init - DeltakHz_2*1000*(-Signe1/Signe2)*Ndiv*(Nu2)/(Nu1) - Beatslope_2*(utc-t1_2); DeltaDDS3 = fDDS3 - DDS4xAD9912.Frequency3; printf("deltaDDS3 = %g\n", DeltaDDS3); SetCtrlVal(MainPanel, PANEL_DDS3, fDDS3); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 3, fDDS3); // allow counter to settle settling = 3; // next step Measuring_2 += 1; } break; case N_MEASUREMENT_ADJUST_FREQ_PLUS: case N_MEASUREMENT_ADJUST_FREQ_MINUS: // adjust DDS frequency to keep beatnote within the bandpass filter if (settling > 0) { settling--; break; } double fDDS2 = DDS4xAD9912.Frequency2 + 275000 - Ch4; SetCtrlVal(MainPanel, PANEL_DDS2, fDDS2); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 2, fDDS2); double fDDS3 = DDS4xAD9912.Frequency3 + 10000 - Ch2; DeltaDDS3 = DeltaDDS3 + 10000 - Ch2; SetCtrlVal(MainPanel, PANEL_DDS3, fDDS3); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 3, fDDS3); // allow counter to settle settling = 3; // next step Measuring_2 += 1; break; case N_MEASUREMENT_FREP_PLUS: // frep positive step if (settling > 0) { settling--; break; } if (t2_1 == 0.0) t2_1 = utc; Frepplus_2 = Frepplus_2 + Math1 + 250000000 - Slope_2 * (utc - t2_2); Delta10K_Plus = Delta10K_Plus + 10000 - (Ch2 - Beatslope_2 * (utc - t2_2)); n_2 += 1; if ((utc - t2_2) > DeltaT_2) { Frepplus_2 = Frepplus_2 / n_2; Delta10K_Plus = Delta10K_Plus / n_2; n_2 = 0; // negative frequency step double fDDS1 = FrequDDS1 - DeltakHz_2 * 1000; DDS4xAD9912_FrequencyRampe(&DDS4xAD9912, 1, DDS4xAD9912.Frequency1, fDDS1, Step2/Ndiv); SetCtrlVal(MainPanel, PANEL_DDS1, fDDS1); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, fDDS1); // adjust DDS3 to keep beatnote within the bandpass filter. prediction double fDDS3 = FrequencyDDS3Init + DeltakHz_2*1000*(-Signe1/Signe2)*Ndiv*(Nu2)/(Nu1); DeltaDDS3 = fDDS3 - DDS4xAD9912.Frequency3; SetCtrlVal(MainPanel, PANEL_DDS3, fDDS3); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 3, fDDS3); // allow counter to settle settling = 3; // next step Measuring_2 += 1; } break; case N_MEASUREMENT_FREP_MINUS: // frep negative step if (settling > 0) { settling--; break; } if (t3_1 == 0.0) t3_1 = utc; Frepminus_2 = Frepminus_2 + Math1 + 250000000 - Slope_2 * (utc - t3_2); Delta10K_Minus= Delta10K_Minus + 10000 - (Ch2 - Beatslope_2 * (utc - t3_2)); n_2 += 1; if ((utc -t3_2) > DeltaT_2) { Frepminus_2 = Frepminus_2 / n_2; Delta10K_Minus = Delta10K_Minus / n_2; n_2 = 0; // compute N2 N_2 = (Signe2)*(-DeltaDDS3+Delta10K_Plus-Delta10K_Minus-Beatslope_2*(t3_2-t2_2) )/(Frepminus_2-Frepplus_2-Slope_2*(t3_2-t2_2)); SetCtrlVal(CalcNPanel, CALCN_N, N_2); // back to nominal frequency DDS4xAD9912_FrequencyRampe (&DDS4xAD9912, 1, FrequDDS1-DeltakHz_2*1000,FrequDDS1, Step2/Ndiv ); SetCtrlVal(MainPanel, PANEL_DDS1, FrequDDS1); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, FrequDDS1); SetCtrlVal(MainPanel, PANEL_DDS2, FrequencyDDSBesInit); DDS4xAD9912_SetFrequency (&DDS4xAD9912, 2, FrequencyDDSBesInit ); SetCtrlVal(MainPanel, PANEL_DDS3, FrequencyDDS3Init-Beatslope_2*(utc-t1_2)); DDS4xAD9912_SetFrequency (&DDS4xAD9912, 3, FrequencyDDS3Init-Beatslope_2*(utc-t1_2) ); t1_2 = 0.0; t2_2 = 0.0; t3_2 = 0.0; Frepminus_2 = 0.0; Frepplus_2 = 0.0; Delta10K_Minus = 0.0; Delta10K_Plus = 0.0; // done Measuring_2 = N_MEASUREMENT_NONE; } break; } switch (Measuring_3) { case N_MEASUREMENT_NONE: // not measuring N3 break; case N_MEASUREMENT_INIT: // init SetCtrlVal(MainPanel, PANEL_DDS4, FrequDDS4); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 4, FrequDDS4); settling = 3; t1_3 = utc; stat_zero(&stat_ch2); // record current DDS3 frequency GetCtrlVal(MainPanel, PANEL_DDS3, &FrequencyDDS3Init); // next step Measuring_3 += 1; break; case N_MEASUREMENT_SLOPE: // slope measurement if (settling > 0) { settling--; break; } stat_accumulate(&stat_ch2, Ch2); if (utc - t1_3 > SlopeTime3) { // slope measurement Slope_3 = stat_ch2.slope; t2_3 = utc; stat_zero(&stat_ch2); // frep positive step SetCtrlVal(MainPanel, PANEL_DDS4, FrequDDS4 + DeltakHz_3 * 1000); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 4, FrequDDS4 + DeltakHz_3 * 1000); // compensate with DDS3 to keep measured beatnote in counter box range double fDDS3 = FrequencyDDS3Init + N3/N1 * Ndiv * DeltakHz_3 * 1000; SetCtrlVal(MainPanel, PANEL_DDS3, fDDS3); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 3, fDDS3); // allow counter to settle settling = 3; // next step Measuring_3 += 1; } break; case N_MEASUREMENT_ADJUST_FREQ_PLUS: case N_MEASUREMENT_ADJUST_FREQ_MINUS: // adjust DDS frequency to keep beatnote within the bandpass filter // next step Measuring_3 += 1; break; case N_MEASUREMENT_FREP_PLUS: // frep positive step if (settling > 0) { settling--; break; } n_3++; Frepplus_3 += Ch2 - Slope_3 * (utc - t2_3); if (utc - t2_3 > DeltaT_3) { // positive step measurement Frepplus_3 = Frepplus_3 / n_3; n_3 = 0; t3_3 = utc; // frep negative step SetCtrlVal(MainPanel, PANEL_DDS4, FrequDDS4 - DeltakHz_3 * 1000); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 4, FrequDDS4 - DeltakHz_3 * 1000); // compensate with DDS3 to keep measured beatnote in counter box range double fDDS3 = FrequencyDDS3Init - N3/N1 * Ndiv * DeltakHz_3 * 1000; SetCtrlVal(MainPanel, PANEL_DDS3, fDDS3); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 3, fDDS3); // allow counter to settle settling = 3; // next step Measuring_3 += 1; } break; case N_MEASUREMENT_FREP_MINUS: // frep negative step if (settling > 0) { settling--; break; } n_3++; Frepminus_3 += Ch2 - Slope_3 * (utc - t3_3); if (utc - t3_3 > DeltaT_3) { // positive step measurement Frepminus_3 = Frepminus_3 / n_3; // compute N3 N_3 = 1000.0 * DeltakHz_3 / (Frepplus_3 - Frepminus_3 + (2 * N3/N1 * Ndiv * DeltakHz_3 * 1000)); SetCtrlVal(CalcNPanel, CALCN_N, N_3); t1_3=0.0; t2_3=0.0; t3_3=0.0; n_3 = 0; Frepminus_3 = 0.0; Frepplus_3 = 0.0; // back to nominal frep SetCtrlVal(MainPanel, PANEL_DDS4, FrequDDS4); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 4, FrequDDS4); // back to initial DDS3 frequency SetCtrlVal(MainPanel, PANEL_DDS3, FrequencyDDS3Init); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 3, FrequencyDDS3Init); // done Measuring_3 = N_MEASUREMENT_NONE; } break; } // Calcul du signe de fb if (Getsign1 == TRUE) { if (utc > tbegin1+2) { if (Math1 > Frepbefore1) Signe1 = -1.0; else Signe1 = +1.0; SetCtrlVal(MainPanel, PANEL_DDS1, Frequency1); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, Frequency1); Getsign1 = FALSE; SetCtrlVal(MainPanel, PANEL_SIGN1, Signe1); } } if (Getsign2 == TRUE) { if (utc > tbegin2+2){ if (Math1 > Frepbefore2) { if (Ch2 > Ch2before) Signe2 = +1.0; else Signe2 = -1.0; } else { if (Ch2 > Ch2before) Signe2 = -1.0; else Signe2 = +1.0; } SetCtrlVal(MainPanel, PANEL_DDS1, Frequency2); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, Frequency2); Getsign2 = FALSE; SetCtrlVal(MainPanel, PANEL_SIGN2, Signe2); } } if (Getsign3 == TRUE) { if (utc > tbegin3+2){ if (Ch3 > Frepbefore3) Signe3 = -1.0; else Signe3 = +1.0; SetCtrlVal(MainPanel, PANEL_DDS3, Frequency3); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 4, Frequency3); Getsign3 = FALSE; SetCtrlVal(MainPanel, PANEL_SIGN3, Signe3); } } // select reference double current = 0.0; switch (slopeReference) { case SLOPE_REFERENCE_MICROWAVE: current = Math2; break; case SLOPE_REFERENCE_HG_CAVITY: current = Ch2 * 1062.5 / 1542.2; break; } // stop slope cancelling if the comb is not locked if (SlopeMeasuring & StopSlopeCancellingOnUnlocked & (freq.previous != 0.0) & (fabs(current - freq.previous) > limitotakoff)) { if (! KeepSlope) { appliedSlope = 0.0; DDSFox_SetSweepRate(&DDS1xAD9956, appliedSlope); SetCtrlVal(MainPanel, PANEL_SLOPE_APPLIED, appliedSlope); } if (! KeepFrequ) { DDSFox_Set(&DDS1xAD9956, DEDRIFT_DDS_FREQUENCY, appliedSlope); } stat_zero(&freq); SetCtrlVal(MainPanel, PANEL_SLOPE_MEASURED, freq.slope); SlopeMeasuring = FALSE; SetCtrlVal(MainPanel, PANEL_MEASURE_SLOPE, 0); } // slope measurement if (SlopeMeasuring) { // update slope measurement stat_accumulate(&freq, current); // update indicator SetCtrlVal(MainPanel, PANEL_SLOPE_MEASURED, freq.slope); // update applied slope if ((utc - SlopeMeasuringTimeBegin) > TimetoSlope) { if (invertSlopeSign) appliedSlope = appliedSlope - freq.slope; else appliedSlope = appliedSlope + freq.slope; if (FrequCorrec) { // proportional correction Nratio += 1; if (Nratio >= 1) { MoyMath2 = MoyMath2 + freq.mean; } if (Nratio == 1 && CenterFrequencyCh2ToDetermine == TRUE) { CenterFrequencyCh2 = MoyMath2; CenterFrequencyCh2ToDetermine = FALSE; } if (Nratio == ratio) { double correction = (MoyMath2/ratio-CenterFrequencyCh2)/TimetoSlope; appliedSlope = appliedSlope + correction; Nratio = 0; MoyMath2 = 0.0; } } SetCtrlVal(MainPanel, PANEL_SLOPE_APPLIED, appliedSlope); DDSFox_SetSweepRate(&DDS1xAD9956, appliedSlope); logmsg("Slope correction update (%+6g) %6g", freq.slope, appliedSlope); stat_zero(&freq); SlopeMeasuringTimeBegin = utc; } } // re-centering if (KeepCentering) { if ((utc - CenteringTimeBegin275K) > Timetorecenter275K && CenteringTimeBegin275K > 10) { double frequency; GetCtrlVal(MainPanel, PANEL_DDS2, &frequency); // adjust DDS2 frequency to keep Ch4 reading around 275000 frequency = frequency + 275000 - Ch4; SetCtrlVal(MainPanel, PANEL_DDS2, frequency); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 2, frequency); CenteringTimeBegin275K = utc; } if ((utc - CenteringTimeBegin10K) > Timetorecenter10K && CenteringTimeBegin10K > 10) { double frequency; GetCtrlVal(MainPanel, PANEL_DDS3, &frequency); // adjust DDS3 frequency to keep Ch2 reading around 10000 frequency = frequency + 10000 - Ch2; SetCtrlVal(MainPanel, PANEL_DDS3, frequency); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 3, frequency); CenteringTimeBegin10K = utc; } } int save; // run id derived from current date in the form YYMMDD char id[7]; snprintf(id, sizeof(id), "%2s%2s%2s", ShortYear, Month, Day); // write LO frequency (Math2) to disk GetCtrlVal(MainPanel, PANEL_CHECKBOX_MATH2SAVE, &save); if (save) { writeData(DATAFOLDER, "Lo", id, Date, Time, utc, Math2); writeData("C:\\Femto\\Results", "OptCavity", id, Date, Time, utc, Math2); } // write Hg frequency (Math3) to disk GetCtrlVal(MainPanel, PANEL_CHECKBOX_MATH3SAVE, &save); if (save) { writeData(DATAFOLDER, "Hg", id, Date, Time, utc, Math3); writeData("C:\\Femto\\Results", "HgCavity", id, Date, Time, utc, Math3); } // write ExtraMath (Math5) to disk GetCtrlVal(MainPanel, PANEL_CHECKBOX_MATH5SAVE, &save); if (save) { writeData(DATAFOLDER, "Ex", id, Date, Time, utc, Math5); } // Special case to handle change of day at next second if ( LocalTime.tm_hour==23 && LocalTime.tm_min==59 && strtod(Sec,NULL)>=58 ) { Acquiring = FALSE; do { Delay(5.1); CurrentFileName(LogFileName); } while (!GetFileInfo(LogFileName, &OldLogFilePtr)); Acquiring = TRUE; OldLogFilePtr = 2; } ResumeTimerCallbacks(); } break; } return 0; } int CVICALLBACK CB_OnFreqPlot (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { int BoxChecked ; Plot_Data * pPlot = NULL; char PlotTitle[] = "Ch? Frequency Plot" ; double PlotMin = 10e6 ; double PlotMax = 65e6 ; switch (event) { case EVENT_COMMIT: GetCtrlVal(MainPanel, control, &BoxChecked); switch (control) { case PANEL_CHECKBOX_FREQ1PLOT : pPlot = &PlotCh1 ; Fmt(PlotTitle, "Ch1 Frequency Plot") ; PlotMin = 54.999e6 ; PlotMax = 55.001e6 ; break ; case PANEL_CHECKBOX_FREQ2PLOT : pPlot = &PlotCh2 ; Fmt(PlotTitle, "Ch2 Frequency Plot") ; PlotMin = 8.0e3 ; PlotMax = 12.0e3 ; break ; case PANEL_CHECKBOX_FREQ3PLOT : pPlot = &PlotCh3 ; Fmt(PlotTitle, "Ch3 Frequency Plot") ; PlotMin = 8.0e3 ; PlotMax = 12.0e3 ; break ; case PANEL_CHECKBOX_FREQ4PLOT : pPlot = &PlotCh4 ; Fmt(PlotTitle, "Ch4 Frequency Plot") ; break ; case PANEL_CHECKBOX_MATH1PLOT : pPlot = &PlotMath1 ; Fmt(PlotTitle, "Math1 Plot") ; PlotMin = 765.0e6 ; PlotMax = 775.0e6 ; break ; case PANEL_CHECKBOX_MATH2PLOT : pPlot = &PlotMath2 ; Fmt(PlotTitle, "Math2 Plot") ; PlotMin = -1.0e9 ; PlotMax = 1.0e9 ; break ; case PANEL_CHECKBOX_MATH3PLOT : pPlot = &PlotMath3 ; Fmt(PlotTitle, "Math3 Plot") ; PlotMin = -1.0e9 ; PlotMax = 1.0e9 ; break ; case PANEL_CHECKBOX_MATH4PLOT : pPlot = &PlotMath4 ; Fmt(PlotTitle, "Math4 Plot") ; PlotMin = -1.0e9 ; PlotMax = 1.0e9 ; break ; case PANEL_CHECKBOX_MATH5PLOT : pPlot = &PlotMath5 ; Fmt(PlotTitle, "Math5 Plot") ; PlotMin = -1.0e9 ; PlotMax = 1.0e9 ; break ; } if (BoxChecked) Plot_InitPanel(pPlot, PlotTitle, PlotMin, PlotMax, &OnCloseViewPanel); else Plot_ClosePanel(pPlot); break; } return 0; } int CVICALLBACK CB_OnAllanPlot (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { int BoxChecked ; Allan_Data * pAllan = NULL; char AllanTitle[] = "Ch? Allan Deviation " ; double Normalizer = 300e12 ; switch (event) { case EVENT_COMMIT: GetCtrlVal(MainPanel, control, &BoxChecked); switch (control) { case PANEL_CHECKBOX_FREQ1ALLAN : pAllan = &AllanCh1 ; Fmt(AllanTitle, "Ch1 Allan Deviation") ; Normalizer = 1.84e12 ; break ; case PANEL_CHECKBOX_FREQ2ALLAN : pAllan = &AllanCh2 ; Fmt(AllanTitle, "Ch2 Allan Deviation") ; Normalizer = 10.e3 ; break ; case PANEL_CHECKBOX_FREQ3ALLAN : pAllan = &AllanCh3 ; Fmt(AllanTitle, "Ch3 Allan Deviation") ; Normalizer = 429.228e12 ; break ; case PANEL_CHECKBOX_FREQ4ALLAN : pAllan = &AllanCh4 ; Fmt(AllanTitle, "Ch4 Allan Deviation") ; Normalizer = 275.0e3 ; break ; case PANEL_CHECKBOX_MATH1ALLAN : pAllan = &AllanMath1 ; Fmt(AllanTitle, "Math1 Allan Deviation") ; Normalizer = 250.0e6 ; break ; case PANEL_CHECKBOX_MATH2ALLAN : pAllan = &AllanMath2 ; Fmt(AllanTitle, "Math2 Allan Deviation") ; Normalizer = 194.395e12 ; break ; case PANEL_CHECKBOX_MATH3ALLAN : pAllan = &AllanMath3 ; Fmt(AllanTitle, "Math3 Allan Deviation") ; Normalizer = 282.143e12 ; break ; case PANEL_CHECKBOX_MATH4ALLAN : pAllan = &AllanMath4 ; Fmt(AllanTitle, "Math4 Allan Deviation") ; Normalizer = 429.228e12 ; break ; case PANEL_CHECKBOX_MATH5ALLAN : pAllan = &AllanMath5 ; Fmt(AllanTitle, "Math5 Allan Deviation") ; Normalizer = 429.228e12 ; break ; } if (BoxChecked) { Allan_InitPanel(pAllan, AllanTitle, Normalizer, &OnCloseViewPanel) ; } else { Allan_ClosePanel(pAllan) ; } ; break; case EVENT_RIGHT_CLICK: break; } return 0; } int CVICALLBACK CB_ChangeDDSOut (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { double frequency ; switch (event) { case EVENT_COMMIT: GetCtrlVal(MainPanel, control, &frequency); switch (control) { case PANEL_DDS1: DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, frequency); break; case PANEL_DDS2: DDS4xAD9912_SetFrequency(&DDS4xAD9912, 2, frequency); break; case PANEL_DDS3: DDS4xAD9912_SetFrequency(&DDS4xAD9912, 3, frequency); break; case PANEL_DDS4: DDS4xAD9912_SetFrequency(&DDS4xAD9912, 4, frequency); break; } } return 0; } int CVICALLBACK CB_ChangeDDSStep (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { double Step ; switch (event) { case EVENT_COMMIT: GetCtrlVal(MainPanel, control, &Step); if (control==PANEL_DDS1STEP) { SetCtrlAttribute(panel, PANEL_DDS1, ATTR_INCR_VALUE, Step); } if (control==PANEL_DDS2STEP) { SetCtrlAttribute(panel, PANEL_DDS2, ATTR_INCR_VALUE, Step); } if (control==PANEL_DDS3STEP) { SetCtrlAttribute(panel, PANEL_DDS3, ATTR_INCR_VALUE, Step); } if (control==PANEL_DDS4STEP) { SetCtrlAttribute(panel, PANEL_DDS4, ATTR_INCR_VALUE, Step); } break; case EVENT_RIGHT_CLICK: break; } return 0; } int CVICALLBACK CB_ChangeMath (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { int len; char *string; switch (event) { case EVENT_COMMIT: GetCtrlAttribute(panel, control, ATTR_STRING_TEXT_LENGTH, &len); string = (char *)malloc(sizeof(char) * (len + 1)); GetCtrlVal(panel, control, string); switch (control) { case PANEL_MATHSTRING1: mupSetExpr(MathParser1, string); break; case PANEL_MATHSTRING2: mupSetExpr(MathParser2, string); break; case PANEL_MATHSTRING3: mupSetExpr(MathParser3, string); break; case PANEL_MATHSTRING4: mupSetExpr(MathParser4, string); break; case PANEL_MATHSTRING5: mupSetExpr(MathParser5, string); break; } free(string); break; } return 0; } int CVICALLBACK CB_ChangeN (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: if (control==PANEL_N1CHOICE) GetCtrlVal(MainPanel, control, &N1) ; if (control==PANEL_N2CHOICE) GetCtrlVal(MainPanel, control, &N2) ; if (control==PANEL_N3CHOICE) GetCtrlVal(MainPanel, control, &N3) ; break; } return 0; } int CVICALLBACK CB_OnPlus10k (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { double Frequency ; switch (event) { case EVENT_COMMIT: switch (control) { case PANEL_PLUS10KDDS1: GetCtrlVal(MainPanel, PANEL_DDS1, &Frequency); Frequency += 10000.0; DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, Frequency); SetCtrlVal(MainPanel, PANEL_DDS1, Frequency); break; case PANEL_PLUS10KDDS2: GetCtrlVal(MainPanel, PANEL_DDS2, &Frequency); Frequency += 10000.0; DDS4xAD9912_SetFrequency(&DDS4xAD9912, 2, Frequency); SetCtrlVal(MainPanel, PANEL_DDS2, Frequency); break; case PANEL_PLUS10KDDS3: GetCtrlVal(MainPanel, PANEL_DDS3, &Frequency); Frequency += 10000.0; DDS4xAD9912_SetFrequency(&DDS4xAD9912, 3, Frequency); SetCtrlVal(MainPanel, PANEL_DDS3, Frequency); break; case PANEL_PLUS10KDDS4: GetCtrlVal(MainPanel, PANEL_DDS4, &Frequency); Frequency += 10000.0; DDS4xAD9912_SetFrequency(&DDS4xAD9912, 4, Frequency); SetCtrlVal(MainPanel, PANEL_DDS4, Frequency); break; } break; } return 0; } int CVICALLBACK CB_OnMinus10k (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { double Frequency; switch (event) { case EVENT_COMMIT: switch (control) { case PANEL_MINUS10KDDS1: GetCtrlVal(MainPanel, PANEL_DDS1, &Frequency); Frequency -= 10000.0; DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, Frequency); SetCtrlVal(MainPanel, PANEL_DDS1, Frequency); break; case PANEL_MINUS10KDDS2: GetCtrlVal(MainPanel, PANEL_DDS2, &Frequency); Frequency -= 10000.0; DDS4xAD9912_SetFrequency(&DDS4xAD9912, 2, Frequency); SetCtrlVal(MainPanel, PANEL_DDS2, Frequency); break; case PANEL_MINUS10KDDS3: GetCtrlVal(MainPanel, PANEL_DDS3, &Frequency); Frequency -= 10000.0; DDS4xAD9912_SetFrequency(&DDS4xAD9912, 3, Frequency); SetCtrlVal(MainPanel, PANEL_DDS3, Frequency); break; case PANEL_MINUS10KDDS4: GetCtrlVal(MainPanel, PANEL_DDS4, &Frequency); Frequency -= 10000.0; DDS4xAD9912_SetFrequency(&DDS4xAD9912, 4, Frequency); SetCtrlVal(MainPanel, PANEL_DDS4, Frequency); break; } break; } return 0; } int CVICALLBACK CB_OnAcceptN (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: switch (measuring) { case MEASURING_N_Lo: N1 = round(N_1); SetCtrlVal(MainPanel, PANEL_N1CHOICE, N1); break; case MEASURING_N_Hg: N2 = round(N_2); SetCtrlVal(MainPanel, PANEL_N2CHOICE, N2); break; case MEASURING_N_Sr: N3 = round(N_3); SetCtrlVal(MainPanel, PANEL_N3CHOICE, N3); break; } break; } return 0; } int CVICALLBACK CB_OnNCalculus (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { int visible; switch (event) { case EVENT_COMMIT: switch (control) { case PANEL_N1CALCULUS: GetPanelAttribute(CalcNPanel, ATTR_VISIBLE, &visible); if (! visible) { measuring = MEASURING_N_Lo; SetCtrlVal(CalcNPanel, CALCN_INTEGRATIONTIME, DeltaT_1); SetCtrlVal(CalcNPanel, CALCN_SLOPETIME, SlopeTime1); SetCtrlVal(CalcNPanel, CALCN_DELTAFREQ, DeltakHz_1); SetPanelAttribute(CalcNPanel, ATTR_TITLE, "Calculate N_Lo"); DisplayPanel(CalcNPanel); } break; case PANEL_N2CALCULUS: GetPanelAttribute(CalcNPanel, ATTR_VISIBLE, &visible); if (! visible) { measuring = MEASURING_N_Hg; SetCtrlVal(CalcNPanel, CALCN_INTEGRATIONTIME, DeltaT_2); SetCtrlVal(CalcNPanel, CALCN_SLOPETIME, SlopeTime2); SetCtrlVal(CalcNPanel, CALCN_DELTAFREQ, DeltakHz_2); SetPanelAttribute(CalcNPanel, ATTR_TITLE, "Calculate N_Hg"); DisplayPanel(CalcNPanel); } break; case PANEL_N3CALCULUS: GetPanelAttribute(CalcNPanel, ATTR_VISIBLE, &visible); if (! visible) { measuring = MEASURING_N_Sr; SetCtrlVal(CalcNPanel, CALCN_INTEGRATIONTIME, DeltaT_3); SetCtrlVal(CalcNPanel, CALCN_SLOPETIME, SlopeTime3); SetCtrlVal(CalcNPanel, CALCN_DELTAFREQ, DeltakHz_3); SetPanelAttribute(CalcNPanel, ATTR_TITLE, "Calculate N_Sr"); DisplayPanel(CalcNPanel); } break; } break; } return 0; } int CVICALLBACK CB_OnStartNCalculus (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: switch (measuring) { case MEASURING_N_Lo: GetCtrlVal(CalcNPanel, CALCN_INTEGRATIONTIME, &DeltaT_1); GetCtrlVal(CalcNPanel, CALCN_SLOPETIME, &SlopeTime1); GetCtrlVal(CalcNPanel, CALCN_DELTAFREQ, &DeltakHz_1); Measuring_1 = TRUE; break; case MEASURING_N_Hg: GetCtrlVal(CalcNPanel, CALCN_INTEGRATIONTIME, &DeltaT_2); GetCtrlVal(CalcNPanel, CALCN_SLOPETIME, &SlopeTime2); GetCtrlVal(CalcNPanel, CALCN_DELTAFREQ, &DeltakHz_2); Measuring_2 = TRUE; break; case MEASURING_N_Sr: GetCtrlVal(CalcNPanel, CALCN_INTEGRATIONTIME, &DeltaT_3); GetCtrlVal(CalcNPanel, CALCN_SLOPETIME, &SlopeTime3); GetCtrlVal(CalcNPanel, CALCN_DELTAFREQ, &DeltakHz_3); Measuring_3 = TRUE; break; } break; } return 0; } int CVICALLBACK CB_OnNStop (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: HidePanel(CalcNPanel); switch (measuring) { case MEASURING_N_Lo: Measuring_1 = FALSE; SetCtrlVal(MainPanel, PANEL_DDS1, FrequDDS1); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, FrequDDS1); SetCtrlVal(MainPanel, PANEL_DDS2, FrequencyDDSBesInit); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 2, FrequencyDDSBesInit); break; case MEASURING_N_Hg: Measuring_2 = FALSE; SetCtrlVal(MainPanel, PANEL_DDS1, FrequDDS1); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, FrequDDS1); SetCtrlVal(MainPanel, PANEL_DDS2, FrequencyDDSBesInit); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 2, FrequencyDDSBesInit); SetCtrlVal(MainPanel, PANEL_DDS3, FrequencyDDS3Init); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 3, FrequencyDDS3Init); break; case MEASURING_N_Sr: Measuring_3 = FALSE; break; } break; } return 0; } int CVICALLBACK CB_OnFindSign (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: switch (control) { case PANEL_FINDSIGN1: tbegin1 = utc; Frepbefore1 = Math1; GetCtrlVal(MainPanel, PANEL_DDS1, &Frequency1) ; SetCtrlVal(MainPanel, PANEL_DDS1, Frequency1+Frequencystep1) ; DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, Frequency1+Frequencystep1); Getsign1 = TRUE; break; case PANEL_FINDSIGN2: tbegin2 = utc; Frepbefore2 = Math1; Ch2before = Ch2; GetCtrlVal(MainPanel, PANEL_DDS1, &Frequency2) ; SetCtrlVal(MainPanel, PANEL_DDS1, Frequency2+Frequencystep2) ; DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, Frequency2+Frequencystep2); Getsign2 = TRUE; break; case PANEL_FINDSIGN3: tbegin3 = utc; Frepbefore3 = Math1; GetCtrlVal(MainPanel, PANEL_DDS4, &Frequency3) ; SetCtrlVal(MainPanel, PANEL_DDS4, Frequency3+Frequencystep3) ; DDS4xAD9912_SetFrequency(&DDS4xAD9912, 4, Frequency3+Frequencystep3); Getsign3 = TRUE; break; } break; } return 0; } int CVICALLBACK CB_OnFind275K (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { double frequency; switch (event) { case EVENT_COMMIT: switch (control) { case PANEL_FIND275K2: GetCtrlVal(MainPanel, PANEL_DDS2, &frequency); frequency = frequency + 275000 - Ch4; SetCtrlVal(MainPanel, PANEL_DDS2, frequency) ; DDS4xAD9912_SetFrequency(&DDS4xAD9912, 2, frequency); break; case PANEL_FIND10K3: GetCtrlVal(MainPanel, PANEL_DDS3, &frequency); frequency = frequency + 10000 - Ch2; SetCtrlVal(MainPanel, PANEL_DDS3, frequency); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 3, frequency); break; } break; } return 0; } int CVICALLBACK CB_OnChangeNdiv (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: GetCtrlVal(MainPanel, PANEL_CHANGENDIV, &Ndiv); FrequDDS1 = 880000000.0 / Ndiv; SetCtrlVal(MainPanel, PANEL_DDS1, FrequDDS1); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, FrequDDS1); break; } return 0; } int CVICALLBACK CB_MeasureSlope (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: GetCtrlVal(panel, control, &SlopeMeasuring); if (SlopeMeasuring) { SlopeMeasuringTimeBegin = utc; stat_zero(&freq); Nratio = -1; MoyMath2 = 0.0; CenterFrequencyCh2ToDetermine = TRUE ; CenterFrequencyCh2 = 0.0; logmsg("Start slope measurement"); } else { if (! KeepSlope) { appliedSlope = 0.0; DDSFox_SetSweepRate(&DDS1xAD9956, appliedSlope); SetCtrlVal(MainPanel, PANEL_SLOPE_APPLIED, appliedSlope); } if (! KeepFrequ) { DDSFox_Set(&DDS1xAD9956, DEDRIFT_DDS_FREQUENCY, appliedSlope); } stat_zero(&freq); SetCtrlVal(panel, PANEL_SLOPE_MEASURED, freq.slope); logmsg("Stop slope measurement"); } break; } return 0; } int CVICALLBACK CB_OnResetSlope (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: CenterFrequencyCh2 = 0.0; MoyMath2 = 0.0; Nratio = -1; CenterFrequencyCh2ToDetermine = TRUE ; appliedSlope = 0.0; SetCtrlVal(panel, PANEL_SLOPE_APPLIED, appliedSlope); DDSFox_Set(&DDS1xAD9956, DEDRIFT_DDS_FREQUENCY, appliedSlope); logmsg("Reset slope measurement"); break; } return 0; } int CVICALLBACK CB_ChangeSlopeTime (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: GetCtrlVal(MainPanel, PANEL_SLOPETIME, &TimetoSlope); break; } return 0; } int CVICALLBACK CB_OnCROX (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: switch (control) { case PANEL_CHECKBOX_CORRFREQU: // enable frequency correction GetCtrlVal(MainPanel, PANEL_CHECKBOX_CORRFREQU, &FrequCorrec); break; case PANEL_CHECKBOX_KEEP: // keep current dedrifting frequency when dedrifting is disabled GetCtrlVal(MainPanel, PANEL_CHECKBOX_KEEP, &KeepFrequ); break; case PANEL_CHECKBOX_KEEPSLOPE: // keep current dedrifting slope when dedrifting is disabled GetCtrlVal(MainPanel, PANEL_CHECKBOX_KEEPSLOPE, &KeepSlope); break; } break; } return 0; } int CVICALLBACK CB_OnReCentering (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { bool BoxChecked = FALSE; switch (event) { case EVENT_COMMIT: if (control== PANEL_CHECKBOX_RECENTER) { GetCtrlVal(MainPanel, PANEL_CHECKBOX_RECENTER, &BoxChecked) ; if (BoxChecked) { KeepCentering=TRUE ; CenteringTimeBegin275K=utc; CenteringTimeBegin10K=utc; } else {KeepCentering=FALSE ;} } break; } return 0; } int CVICALLBACK CB_OnStopSlopeCancellingOnUnlocked (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: GetCtrlVal(MainPanel, PANEL_CHECKBOX_STOPIFAUTODE, &StopSlopeCancellingOnUnlocked); break; } return 0; } int CVICALLBACK CB_OnSlopeReference (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: GetCtrlVal(MainPanel, PANEL_SLOPE_REFERENCE, &slopeReference); break; } return 0; } int CVICALLBACK CB_OnEstimateN (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { int visible; double wl; switch (event) { case EVENT_COMMIT: // be prepared to support more N estimates for different beat notes switch (control) { case PANEL_ESTIMATE_N3: GetPanelAttribute(EstimateN3Panel, ATTR_VISIBLE , &visible); if (! visible) { DisplayPanel(EstimateN3Panel); } // set current frep SetCtrlVal(EstimateN3Panel, ESTIMATEN3_FREP, 250e6 + Math1); // default wavelenght for Sr cavity GetCtrlVal(EstimateN3Panel, ESTIMATEN3_WAVELENGTH, &wl); if (wl == 0.0) SetCtrlVal(EstimateN3Panel, ESTIMATEN3_WAVELENGTH, 698.50); // reset N3 estimate SetCtrlVal(EstimateN3Panel, ESTIMATEN3_N, 0.0); break; } break; } return 0; } int CVICALLBACK CB_OnNEstimateCancel (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { int visible; switch (event) { case EVENT_COMMIT: GetPanelAttribute(panel, ATTR_VISIBLE, &visible); if (visible) HidePanel(panel); break; } return 0; } int CVICALLBACK CB_OnNEstimateSet (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: GetCtrlVal(panel, ESTIMATEN3_N, &N3); SetCtrlVal(MainPanel, PANEL_N3CHOICE, N3); HidePanel(panel); break; } return 0; } int CVICALLBACK CB_OnNEstimate (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { double frep, wl, N; switch (event) { case EVENT_COMMIT: GetCtrlVal(panel, ESTIMATEN3_FREP, &frep); GetCtrlVal(panel, ESTIMATEN3_WAVELENGTH, &wl); N = round(299792458.0 / wl / 1e-9 / frep); SetCtrlVal(panel, ESTIMATEN3_N, N); break; } return 0; } int CVICALLBACK CB_SetSlope (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: GetCtrlVal(panel, control, &appliedSlope); DDSFox_SetSweepRate(&DDS1xAD9956, appliedSlope); break; } return 0; } int CVICALLBACK CB_InvertSlopeSign (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: GetCtrlVal(panel, control, &invertSlopeSign); break; } return 0; } int CVICALLBACK CB_ResetDedriftDDS (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: // stop slope measurement and reset slope SlopeMeasuring = 0; SetCtrlVal(panel, PANEL_MEASURE_SLOPE, SlopeMeasuring); CenterFrequencyCh2 = 0.0; MoyMath2 = 0.0; Nratio = -1; CenterFrequencyCh2ToDetermine = TRUE ; appliedSlope = 0.0; SetCtrlVal(panel, PANEL_SLOPE_APPLIED, appliedSlope); // reset DDS DDSFox_Reset(&DDS1xAD9956); DDSFox_SetProfile(&DDS1xAD9956); DDSFox_SetDiv(&DDS1xAD9956, 1); DDSFox_Set(&DDS1xAD9956, DEDRIFT_DDS_FREQUENCY, appliedSlope); break; } return 0; } int CVICALLBACK CB_ShowLog (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: SetPanelAttribute(LoggingPanel, ATTR_VISIBLE, 1); break; } return 0; } int CVICALLBACK CB_OnLoggingPanelEvent(int panel, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_CLOSE: SetPanelAttribute(LoggingPanel, ATTR_VISIBLE, 0); break; } return 0; }