Mercurial > hg > fxanalyse
view FXAnalyse.c @ 142:fd085d61e4ca
Rework data logging
author | Daniele Nicolodi <daniele.nicolodi@obspm.fr> |
---|---|
date | Wed, 22 Jan 2014 14:45:23 +0100 |
parents | 3f7eef731ccc |
children | 09a4548e1436 |
line wrap: on
line source
#include <tcpsupp.h> #include <utility.h> #include <ansi_c.h> #include <cvirte.h> #include <userint.h> #include <formatio.h> #include <string.h> #include <future.h> #include "YLCStuff.h" #include "FXAnalyse.h" #include "Plot.h" #include "Allan.h" #include "DDS4xAD9912.h" #include "DDS_Fox.h" #include "muParserDLL.h" #include "stat.h" #define SR_LOGGER_IP "145.238.204.91" #define DATAFOLDER "Z:\\Measures-2013" #define FREP_STEP_SIZE 50000.0 // number of channels read #define NCHAN 4 // data acquisition event struct event { struct timeval time; double data[NCHAN]; }; // data acquisition status int acquiring; // data queue CmtTSQHandle dataQueue; // data provider thread CmtThreadFunctionID dataProviderThread; // data providers int CVICALLBACK FakeDataProvider (void *functionData); int CVICALLBACK FileDataProvider (void *functionData); int CVICALLBACK KKDataProvider (void *functionData); // select which data provider to use #define DataProvider KKDataProvider struct event event; double utc; double Ch1, Ch2, Ch3, Ch4; double Math1, Math2, Math3, Math4, Math5; double N1, N2, N3; // panels static int MainPanel; static int CalcNPanel; static int EstimateN3Panel; static int LoggingPanel; struct adev { Allan_Data allan; double *data; const char *title; double normalization; int control; }; #define ADEV_INIT(__channel, __normalization) \ { \ .data = & ## __channel, \ .title = #__channel, \ .normalization = __normalization, \ .control = PANEL_ADEV_ ## __channel \ } static int adev_toggle(struct adev *adev) { if (adev->allan.active) Allan_ClosePanel(&(adev->allan)); else Allan_InitPanel(&(adev->allan), adev->title, adev->normalization, MainPanel, adev->control); return adev->allan.active; } static inline void adev_update(struct adev *adev) { if (adev->allan.active) Allan_AddFrequency(&(adev->allan), *(adev->data)); } struct adev adevs[] = { ADEV_INIT(Ch1, 1.84e12), ADEV_INIT(Ch2, 10.0e3), ADEV_INIT(Ch3, 429.228e12), ADEV_INIT(Ch4, 275.0e3), ADEV_INIT(Math1, 250.0e6), ADEV_INIT(Math2, 194.395e12), ADEV_INIT(Math3, 282.143e12), ADEV_INIT(Math4, 429.228e12), ADEV_INIT(Math5, 1.0), { NULL } }; struct plot { Plot_Data plot; double *data; const char *title; double min; double max; int control; }; #define PLOT_INIT(__channel, __min, __max) \ { \ .data = & ## __channel, \ .title = #__channel, \ .min = __min, \ .max = __max, \ .control = PANEL_PLOT_ ## __channel \ } static int plot_toggle(struct plot *plot) { if (plot->plot.active) Plot_ClosePanel(&(plot->plot)); else Plot_InitPanel(&(plot->plot), plot->title, plot->min, plot->max, MainPanel, plot->control); return plot->plot.active; } static inline void plot_update(struct plot *plot) { if (plot->plot.active) Plot_AddFrequency(&(plot->plot), *(plot->data)); } struct plot plots[] = { PLOT_INIT(Ch1, 54.999e6, 55.001e6), PLOT_INIT(Ch2, 0.0, 0.0), PLOT_INIT(Ch3, 0.0, 0.0), PLOT_INIT(Ch4, 0.0, 0.0), PLOT_INIT(Math1, 0.0, 0.0), PLOT_INIT(Math2, 0.0, 0.0), PLOT_INIT(Math3, 0.0, 0.0), PLOT_INIT(Math4, 0.0, 0.0), PLOT_INIT(Math5, 0.0, 0.0), { NULL } }; // 1xAD9956 DDS box DDSParameter DDS1xAD9956; // 4xAD9912 DDS box DDS4xAD9912_Data DDS4xAD9912; muParserHandle_t MathParser1, MathParser2, MathParser3, MathParser4, MathParser5; double Ndiv = 8.0; int settling = 0; enum { MEASURING_N_NONE, MEASURING_N_Lo, MEASURING_N_Hg, MEASURING_N_Sr, }; int measuring = MEASURING_N_NONE; enum { N_MEASUREMENT_NONE, N_MEASUREMENT_INIT, N_MEASUREMENT_SLOPE, N_MEASUREMENT_ADJUST_FREQ_PLUS, N_MEASUREMENT_FREP_PLUS, N_MEASUREMENT_ADJUST_FREQ_MINUS, N_MEASUREMENT_FREP_MINUS, }; int Measuring_1 = N_MEASUREMENT_NONE; int Measuring_2 = N_MEASUREMENT_NONE; int Measuring_3 = N_MEASUREMENT_NONE; double FrequDDS1=110000000.0; double Slope_1=0.0, Slope_2=0.0, Slope_3=0.0, Beatslope_2=0.0; double SlopeTime1=40.0, SlopeTime2=40.0, SlopeTime3=40.0; double Ch4Slope = 0.0; double N_1=0.0, N_2=0.0, N_3=0.0; double DeltaT_1=20.0, DeltakHz_1=500.0, t1_1=0.0, t2_1=0.0, t3_1=0.0, Frepplus_1=0.0, Frepminus_1=0.0; double DeltaT_2=20.0, DeltakHz_2=500.0, t1_2=0.0, t2_2=0.0, t3_2=0.0, Frepplus_2=0.0, Frepminus_2=0.0; double DeltaT_3=20.0, DeltakHz_3=500.0, t1_3=0.0, t2_3=0.0, t3_3=0.0; int n_1=0, n_2=0, n_3=0; double FrequencyDDSBesInit = 0.0; double FrequencyDDS3Init = 0.0; double DeltaDDS3=0.0,Delta10K_Plus=0.0,Delta10K_Minus=0.0; double Nu1=0.0, Nu2= 200000-147000+282143746.557455e6; double f_rep_slope; double f_rep_plus, f_rep_minus; double f_beat_Sr_plus, f_beat_Sr_minus; double Ch4Plus=0.0,Ch4Minus=0.0; double Frequencystep1=10000.0, tbegin1=0.0, Frepbefore1=0.0, Frequency1=0.0; double Frequencystep2=10.0, tbegin2=0.0, Frepbefore2=0.0, Ch2before=0.0, Frequency2=0.0; double Frequencystep3=100000.0, tbegin3=0.0, Frepbefore3=0.0, Frequency3=0.0; volatile bool Getsign1=FALSE,Getsign2=FALSE,Getsign3=FALSE; double Sign1=1.0, Sign2=1.0, Sign3=0.0; struct stat stat_math1, stat_ch2, stat_ch3, stat_ch4, freq; struct rollmean rollmean_ch1, rollmean_ch2, rollmean_ch3, rollmean_ch4; // dedrift struct dedrift { int enabled; // dedrift enabled int reference; // reference frequency int invert; // invert applied slope sign int doubleslope; // double applied slope int keep_freq; // keep current frequency value when dedrift is disabled int keep_slope; // keep current slope value when dedrift is disabled double freq0; // DDS center frequency double threshold; // maximum allowed frequency change double applied; // currently applied slope double interval; // measurement duration double t0; // beginning of currrent measurement interval }; enum { DEDRIFT_REFERENCE_MICROWAVE = 0, DEDRIFT_REFERENCE_HG = 1, }; struct dedrift dedrift = { .enabled = FALSE, .reference = DEDRIFT_REFERENCE_MICROWAVE, .invert = FALSE, .doubleslope = FALSE, .keep_freq = TRUE, .keep_slope = TRUE, .freq0 = 70e6, .threshold = 100.0, .applied = 0.0, .interval = 40.0, .t0 = 0.0 }; // recenter struct recenter { int enabled; // recenter enabled int Lo; // recenter microwave beatnote int Sr; // recenter Sr beatnote int Hg; // recenter Hg beatnote double interval; // interval double t0; // beginning of current interval }; struct recenter recenter = { .enabled = FALSE, .Lo = FALSE, .Sr = FALSE, .Hg = FALSE, .interval = 1800.0, .t0 = 0.0 }; // data loggging struct datafile { char *name; double *data; int nchan; int control; int write; }; struct datafile datafiles[] = { { "Raw", event.data, 4, PANEL_SAVE_RAW, FALSE }, { "DDS", DDS4xAD9912.frequency, 4, PANEL_SAVE_DDS, FALSE }, { "Lo", &Math2, 1, PANEL_SAVE_LO, FALSE }, { "Hg", &Math3, 1, PANEL_SAVE_HG, FALSE }, { "Sr", &Math4, 1, PANEL_SAVE_SR, FALSE }, { "Ex", &Math5, 1, PANEL_SAVE_EXTRA, FALSE }, { NULL, } }; static void write_data(const char *folder, const char *name, const char *id, const char *timestr, double utc, double *v, int nchan) { char line[1024]; char filename[FILENAME_MAX]; // construct filename in the form folder\\id-name.txt snprintf(filename, sizeof(filename), "%s\\%s-%s.txt", folder, id, name); int fd = OpenFile(filename, VAL_WRITE_ONLY, VAL_APPEND, VAL_ASCII); switch (nchan) { case 1: Fmt(line, "%s\t%f[p3]\t%f[p3]", timestr, utc, v[0]); break; case 4: Fmt(line, "%s\t%f[p3]\t%f[p3]\t%f[p3]\t%f[p3]\t%f[p3]", timestr, utc, v[0], v[1], v[2], v[3]); break; default: strcpy(line, "?"); } WriteLine(fd, line, -1); CloseFile(fd); } static inline void datafile_append(struct datafile *d, char *id, char *timestr) { if (d->write) write_data(DATAFOLDER, d->name, id, timestr, utc, d->data, d->nchan); } static const char * thousands(char *buffer, int size, char *fmt, double val) { // compute how many separators we need #pragma DisableFunctionRuntimeChecking log10 int nsep = log10(fabs(val)); nsep = (nsep > 0 ? nsep / 3 : 0); // format value int len = snprintf(buffer, size, fmt, val); char *src = buffer + len; char *dst = src + nsep; // copy till decimal separator while (*src != '.') *dst-- = *src--; // the next char is the decimal separator int n = -1; // copy till src and dst point to the same location while (src != dst) { *dst-- = *src--; // insert separator if (isdigit(*src) && (++n) && ((n % 3) == 0)) *dst-- = ' '; } return buffer; } #define MIN(x, y) (x) < (y) ? (x) : (y) // MJD functiom used by the Sr programs static inline double utc2mjd(double utc) { return 15020.0 + utc / 86400.0; } void logmsg(const char *frmt, ...) { char msg[1024]; int len = 0; // timestamp len += sprintf(msg, "%014.3f ", utc); time_t now = time(NULL); struct tm *t = localtime(&now); len += strftime(msg + len, sizeof(msg) - len, "%d-%m-%Y %H:%M:%S ", t); // message va_list args; va_start(args, frmt); len += vsnprintf(msg + len, sizeof(msg) - len, frmt, args); va_end(args); // add newline len = MIN(len, sizeof(msg) - 2); msg[len] = '\n'; msg[len + 1] = '\0'; // display message SetCtrlVal(LoggingPanel, LOGGING_LOGGING, msg); } int Sr_datalogger_enabled = FALSE; // Sr data logger int Sr_datalogger_send(const char* id, double utc, double data) { static unsigned int handle = 0; char buffer[1024]; // try to connect and quit if unsuccessfull if (handle == 0) { if (ConnectToTCPServer(&handle, 3491, SR_LOGGER_IP, NULL, NULL, 1) < 0) { logmsg("Sr data logger connection error"); return -1; } logmsg("connected to Sr data logger"); } snprintf(buffer, sizeof(buffer), "%s %.7f %.8f", id, utc2mjd(utc), data); if (ClientTCPWrite(handle, buffer, strlen(buffer) + 1, 0) < 0) { // try to reconnect and resend handle = 0; Sr_datalogger_send(id, utc, data); } return 0; } muParserHandle_t initMathParser() { muParserHandle_t parser = mupCreate(); mupDefineOprtChars(parser, "abcdefghijklmnopqrstuvwxyzµ" "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "+-*^/?<>=#!$%&|~'_"); mupDefineVar(parser, "UTC", &utc); mupDefineVar(parser, "Ch1", &Ch1); mupDefineVar(parser, "Ch2", &Ch2); mupDefineVar(parser, "Ch3", &Ch3); mupDefineVar(parser, "Ch4", &Ch4); mupDefineVar(parser, "DDS1", &(DDS4xAD9912.frequency[0])); mupDefineVar(parser, "DDS2", &(DDS4xAD9912.frequency[1])); mupDefineVar(parser, "DDS3", &(DDS4xAD9912.frequency[2])); mupDefineVar(parser, "DDS4", &(DDS4xAD9912.frequency[3])); mupDefineVar(parser, "N1", &N1); mupDefineVar(parser, "N2", &N2); mupDefineVar(parser, "N3", &N3); mupDefineVar(parser, "Nu1", &Nu1); mupDefineVar(parser, "Nu2", &Nu2); mupDefineVar(parser, "DeltaDDS3", &DeltaDDS3); mupDefineVar(parser, "Sign1", &Sign1); mupDefineVar(parser, "Sign2", &Sign2); mupDefineVar(parser, "Sign3", &Sign3); mupDefineVar(parser, "Ndiv", &Ndiv); mupDefinePostfixOprt(parser, "P", &Peta, 1); mupDefinePostfixOprt(parser, "T", &Tera, 1); mupDefinePostfixOprt(parser, "G", &Giga, 1); mupDefinePostfixOprt(parser, "M", &Mega, 1); mupDefinePostfixOprt(parser, "k", &kilo, 1); mupDefinePostfixOprt(parser, "m", &milli, 1); mupDefinePostfixOprt(parser, "u", µ, 1); mupDefinePostfixOprt(parser, "µ", µ, 1); mupDefinePostfixOprt(parser, "n", &nano, 1); mupDefinePostfixOprt(parser, "p", &pico, 1); mupDefinePostfixOprt(parser, "f", &femto, 1); return parser; } void CVICALLBACK DataAvailableCB (CmtTSQHandle queueHandle, unsigned int event, int value, void *callbackData); int main (int argc, char *argv[]) { double frequency; char expr[1024]; if (InitCVIRTE (0, argv, 0) == 0) return -1; if ((MainPanel = LoadPanel (0, "FXAnalyse.uir", PANEL)) < 0) return -1; if ((CalcNPanel = LoadPanel (MainPanel, "FXAnalyse.uir", CALCN)) < 0) return -1; if ((EstimateN3Panel = LoadPanel (MainPanel, "FXAnalyse.uir", ESTIMATEN3)) < 0) return -1; if ((LoggingPanel = LoadPanel (0, "FXAnalyse.uir", LOGGING)) < 0) return -1; // initialize 4x AD9959 DDS box DDS4xAD9912_Reset(&DDS4xAD9912); GetCtrlVal(MainPanel, PANEL_DDS1, &frequency); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, frequency); GetCtrlVal(MainPanel, PANEL_DDS2, &frequency); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 2, frequency); GetCtrlVal(MainPanel, PANEL_DDS3, &frequency); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 3, frequency); GetCtrlVal(MainPanel, PANEL_DDS4, &frequency); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 4, frequency); // initialyze 1x AD9956 DDS box DDSFox_Initialize(&DDS1xAD9956, "145.238.205.58", 6665, dedrift.freq0); Ch1 = Ch2 = Ch3 = Ch4 = 0.0; GetCtrlVal(MainPanel, PANEL_N1CHOICE, &N1); GetCtrlVal(MainPanel, PANEL_N2CHOICE, &N2); GetCtrlVal(MainPanel, PANEL_N3CHOICE, &N3); MathParser1 = initMathParser(); GetCtrlVal(MainPanel, PANEL_MATHSTRING1, expr); mupSetExpr(MathParser1, expr); MathParser2 = initMathParser(); mupDefineVar(MathParser2, "Math1", &Math1); mupDefineVar(MathParser2, "DDS", &(DDS4xAD9912.frequency[0])); GetCtrlVal(MainPanel, PANEL_MATHSTRING2, expr); mupSetExpr(MathParser2, expr); MathParser3 = initMathParser(); mupDefineVar(MathParser3, "Math1", &Math1); mupDefineVar(MathParser3, "Math2", &Math2); mupDefineVar(MathParser3, "DDS", &(DDS4xAD9912.frequency[1])); GetCtrlVal(MainPanel, PANEL_MATHSTRING3, expr); mupSetExpr(MathParser3, expr); MathParser4 = initMathParser(); mupDefineVar(MathParser4, "Math1", &Math1); mupDefineVar(MathParser4, "Math2", &Math2); mupDefineVar(MathParser4, "Math3", &Math3); GetCtrlVal(MainPanel, PANEL_MATHSTRING4, expr); mupSetExpr(MathParser4, expr); MathParser5 = initMathParser(); mupDefineVar(MathParser5, "Math1", &Math1); mupDefineVar(MathParser5, "Math2", &Math2); mupDefineVar(MathParser5, "Math3", &Math3); mupDefineVar(MathParser5, "Math4", &Math4); GetCtrlVal(MainPanel, PANEL_MATHSTRING5, expr); mupSetExpr(MathParser5, expr); // data queue CmtNewTSQ(128, sizeof(struct event), 0, &dataQueue); // register callback to execute when data will be in the data queue CmtInstallTSQCallback(dataQueue, EVENT_TSQ_ITEMS_IN_QUEUE, 1, DataAvailableCB, NULL, CmtGetCurrentThreadID(), NULL); DisplayPanel(MainPanel); RunUserInterface(); DiscardPanel(MainPanel); return 0; } int CVICALLBACK QuitCallback (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: QuitUserInterface(0); break; } return 0; } int CVICALLBACK CB_OnEventMain(int panel, int event, void *callbackData, int eventData1, int eventData2) { int ActiveControl ; int StepIndex ; double Step ; switch (event) { case EVENT_KEYPRESS: switch (eventData1) // ie the code of the key which has been stroke { case VAL_RIGHT_ARROW_VKEY : ActiveControl = GetActiveCtrl(panel); if (ActiveControl==PANEL_DDS1 || ActiveControl==PANEL_DDS1STEP) { GetCtrlIndex(MainPanel, PANEL_DDS1STEP, &StepIndex); if (StepIndex<14){ SetCtrlIndex(MainPanel, PANEL_DDS1STEP, ++StepIndex) ; GetCtrlVal(MainPanel, PANEL_DDS1STEP, &Step); SetCtrlAttribute(MainPanel, PANEL_DDS1, ATTR_INCR_VALUE, Step) ; }; }; if (ActiveControl==PANEL_DDS2 || ActiveControl==PANEL_DDS2STEP) { GetCtrlIndex(MainPanel, PANEL_DDS2STEP, &StepIndex); if (StepIndex<14){ SetCtrlIndex(MainPanel, PANEL_DDS2STEP, ++StepIndex) ; GetCtrlVal(MainPanel, PANEL_DDS2STEP, &Step); SetCtrlAttribute(MainPanel, PANEL_DDS2, ATTR_INCR_VALUE, Step) ; }; }; if (ActiveControl==PANEL_DDS3|| ActiveControl==PANEL_DDS3STEP) { GetCtrlIndex(MainPanel, PANEL_DDS3STEP, &StepIndex); if (StepIndex<14){ SetCtrlIndex(MainPanel, PANEL_DDS3STEP, ++StepIndex) ; GetCtrlVal(MainPanel, PANEL_DDS3STEP, &Step); SetCtrlAttribute(MainPanel, PANEL_DDS3, ATTR_INCR_VALUE, Step) ; }; }; if (ActiveControl==PANEL_DDS4|| ActiveControl==PANEL_DDS4STEP) { GetCtrlIndex(MainPanel, PANEL_DDS4STEP, &StepIndex); if (StepIndex<14){ SetCtrlIndex(MainPanel, PANEL_DDS4STEP, ++StepIndex) ; GetCtrlVal(MainPanel, PANEL_DDS4STEP, &Step); SetCtrlAttribute(MainPanel, PANEL_DDS4, ATTR_INCR_VALUE, Step) ; }; }; break; case VAL_LEFT_ARROW_VKEY : ActiveControl = GetActiveCtrl(panel); if (ActiveControl==PANEL_DDS1 || ActiveControl==PANEL_DDS1STEP) { GetCtrlIndex(MainPanel, PANEL_DDS1STEP, &StepIndex); if (StepIndex>0){ SetCtrlIndex(MainPanel, PANEL_DDS1STEP, --StepIndex) ; GetCtrlVal(MainPanel, PANEL_DDS1STEP, &Step); SetCtrlAttribute(MainPanel, PANEL_DDS1, ATTR_INCR_VALUE, Step) ; }; }; if (ActiveControl==PANEL_DDS2 || ActiveControl==PANEL_DDS2STEP) { GetCtrlIndex(MainPanel, PANEL_DDS2STEP, &StepIndex); if (StepIndex>0){ SetCtrlIndex(MainPanel, PANEL_DDS2STEP, --StepIndex) ; GetCtrlVal(MainPanel, PANEL_DDS2STEP, &Step); SetCtrlAttribute(MainPanel, PANEL_DDS2, ATTR_INCR_VALUE, Step) ; }; }; if (ActiveControl==PANEL_DDS3 || ActiveControl==PANEL_DDS3STEP) { GetCtrlIndex(MainPanel, PANEL_DDS3STEP, &StepIndex); if (StepIndex>0){ SetCtrlIndex(MainPanel, PANEL_DDS3STEP, --StepIndex) ; GetCtrlVal(MainPanel, PANEL_DDS3STEP, &Step); SetCtrlAttribute(MainPanel, PANEL_DDS3, ATTR_INCR_VALUE, Step) ; }; }; if (ActiveControl==PANEL_DDS4 || ActiveControl==PANEL_DDS4STEP) { GetCtrlIndex(MainPanel, PANEL_DDS4STEP, &StepIndex); if (StepIndex>0){ SetCtrlIndex(MainPanel, PANEL_DDS4STEP, --StepIndex) ; GetCtrlVal(MainPanel, PANEL_DDS4STEP, &Step); SetCtrlAttribute(MainPanel, PANEL_DDS4, ATTR_INCR_VALUE, Step) ; }; }; break; case VAL_F2_VKEY : SetActiveCtrl(MainPanel, PANEL_DDS1); break; case VAL_F3_VKEY : SetActiveCtrl(MainPanel, PANEL_DDS2); break; case VAL_F4_VKEY : SetActiveCtrl(MainPanel, PANEL_DDS3); break; case VAL_F5_VKEY : SetActiveCtrl(MainPanel, PANEL_DDS4); break; }; break; } return 0; } int CVICALLBACK CB_OnStart (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: if (acquiring) break; logmsg("Start"); SetCtrlAttribute(panel, PANEL_STARTBUTTON, ATTR_DIMMED, TRUE); acquiring = 1; // start data provider thread CmtScheduleThreadPoolFunctionAdv( DEFAULT_THREAD_POOL_HANDLE, DataProvider, NULL, THREAD_PRIORITY_HIGHEST, NULL, 0, NULL, 0, &dataProviderThread); break; } return 0; } int CVICALLBACK CB_OnStop (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: if (! acquiring) break; logmsg("Stop"); acquiring = 0; // wait for data provider thread to terminate CmtWaitForThreadPoolFunctionCompletion( DEFAULT_THREAD_POOL_HANDLE, dataProviderThread, OPT_TP_PROCESS_EVENTS_WHILE_WAITING); CmtReleaseThreadPoolFunctionID( DEFAULT_THREAD_POOL_HANDLE, dataProviderThread); SetCtrlAttribute(panel, PANEL_STARTBUTTON, ATTR_DIMMED, FALSE); break; } return 0; } void CVICALLBACK MessageCB (void *msg) { if (msg != NULL) logmsg(msg); } void CVICALLBACK DataAvailableCB (CmtTSQHandle queueHandle, unsigned int ev, int value, void *callbackData) { int read; switch (ev) { case EVENT_TSQ_ITEMS_IN_QUEUE: // read data from the data queue while (value > 0) { read = CmtReadTSQData(queueHandle, &event, 1, TSQ_INFINITE_TIMEOUT, 0); if (read != 1) logmsg("Error!"); value = value - read; utc = event.time.tv_sec + event.time.tv_usec * 1e-6; Ch1 = event.data[0]; Ch2 = event.data[1]; Ch3 = event.data[2]; Ch4 = event.data[3]; // update display SetCtrlVal(MainPanel, PANEL_UTC, utc); SetCtrlVal(MainPanel, PANEL_CH1, Ch1); SetCtrlVal(MainPanel, PANEL_CH2, Ch2); SetCtrlVal(MainPanel, PANEL_CH3, Ch3); SetCtrlVal(MainPanel, PANEL_CH4, Ch4); // compute Math1 = mupEval(MathParser1); Math2 = mupEval(MathParser2); Math3 = mupEval(MathParser3); Math4 = mupEval(MathParser4); Math5 = mupEval(MathParser5); // update display. numeric controllers do not format values // with a thousands separator: use string controllers and a // custom formatting function char buffer[256]; SetCtrlVal(MainPanel,PANEL_MATH1, thousands(buffer, sizeof(buffer), "%.6f", Math1)); SetCtrlVal(MainPanel,PANEL_MATH2, thousands(buffer, sizeof(buffer), "%.3f", Math2)); SetCtrlVal(MainPanel,PANEL_MATH3, thousands(buffer, sizeof(buffer), "%.3f", Math3)); SetCtrlVal(MainPanel,PANEL_MATH4, thousands(buffer, sizeof(buffer), "%.3f", Math4)); SetCtrlVal(MainPanel,PANEL_MATH5, thousands(buffer, sizeof(buffer), "%.3f", Math5)); // update timeseries plots for (struct plot *plot = plots; plot->data; plot++) plot_update(plot); // update allan deviation plots for (struct adev *adev = adevs; adev->data; adev++) adev_update(adev); // Calcul de N switch (Measuring_1) { case N_MEASUREMENT_NONE: // not measuring break; case N_MEASUREMENT_INIT: // initialization step // set DDS1 to nominal frequency SetCtrlVal(MainPanel, PANEL_DDS1, FrequDDS1); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, FrequDDS1); GetCtrlVal(MainPanel, PANEL_DDS2, &FrequencyDDSBesInit); t2_1 = t3_1 = 0.0; t1_1 = utc; stat_zero(&stat_math1); stat_zero(&stat_ch4); // next step Measuring_1 += 1; break; case N_MEASUREMENT_SLOPE: // slope measurement stat_accumulate(&stat_math1, Math1); stat_accumulate(&stat_ch4, Ch4); if ((utc - t1_1) > SlopeTime1) { Slope_1 = stat_math1.slope; Ch4Slope = stat_ch4.slope; SetCtrlVal(CalcNPanel, CALCN_SLOPE, Slope_1); // frep positive step DDS4xAD9912_RampFrequency(&DDS4xAD9912, 1, FrequDDS1 + DeltakHz_1 * 1000.0, FREP_STEP_SIZE); SetCtrlVal(MainPanel, PANEL_DDS1, FrequDDS1 + DeltakHz_1 * 1000.0); // allow counter to settle settling = 3; // next step Measuring_1 += 1; } break; case N_MEASUREMENT_ADJUST_FREQ_PLUS: case N_MEASUREMENT_ADJUST_FREQ_MINUS: // adjust DDS frequency to keep beatnote within the bandpass filter if (settling > 0) { settling--; break; } double fDDS2 = DDS4xAD9912_GetFrequency(&DDS4xAD9912, 2); fDDS2 += 275000 - Ch4; SetCtrlVal(MainPanel, PANEL_DDS2, fDDS2); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 2, fDDS2); // allow counter to settle settling = 3; // next step Measuring_1 += 1; break; case N_MEASUREMENT_FREP_PLUS: // frep positive step if (settling > 0) { settling--; break; } if (t2_1 == 0.0) t2_1 = utc; Frepplus_1 = Frepplus_1 + Math1 - Slope_1 * (utc - t2_1); Ch4Plus = Ch4Plus + Ch4 - Ch4Slope * (utc - t2_1); n_1 += 1; if ((utc - t2_1) > DeltaT_1) { Frepplus_1 = Frepplus_1 / n_1; Ch4Plus = Ch4Plus / n_1; n_1 = 0; // frep negative step DDS4xAD9912_RampFrequency(&DDS4xAD9912, 1, FrequDDS1 - DeltakHz_1 * 1000.0, FREP_STEP_SIZE); SetCtrlVal(MainPanel, PANEL_DDS1, FrequDDS1 - DeltakHz_1 * 1000.0); // allow counter to settle settling = 3; // next step Measuring_1 += 1; } break; case N_MEASUREMENT_FREP_MINUS: // frep negative step if (settling > 0) { settling--; break; } if (t3_1 == 0.0) t3_1 = utc; Frepminus_1 = Frepminus_1 + Math1 - Slope_1 * (utc - t3_1); Ch4Minus = Ch4Minus + Ch4 - Ch4Slope * (utc - t3_1); n_1 += 1; if ((utc - t3_1) > DeltaT_1) { Frepminus_1 = Frepminus_1 / n_1; Ch4Minus = Ch4Minus / n_1; n_1 = 0; // compute N1 N_1 = Sign1 * (2*Ndiv * DeltakHz_1 * 1000)/(Frepminus_1 - Frepplus_1 - Slope_1 * (t3_1 - t2_1)); SetCtrlVal(CalcNPanel, CALCN_N, N_1); t1_1 = 0.0; t2_1 = 0.0; t3_1 = 0.0; Frepminus_1 = 0.0; Frepplus_1 = 0.0; // back to nominal frep DDS4xAD9912_RampFrequency(&DDS4xAD9912, 1, FrequDDS1, FREP_STEP_SIZE); SetCtrlVal(MainPanel, PANEL_DDS1, FrequDDS1); SetCtrlVal(MainPanel, PANEL_DDS2, FrequencyDDSBesInit); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 2, FrequencyDDSBesInit); // done Measuring_1 = N_MEASUREMENT_NONE; } break; } switch (Measuring_2) { case N_MEASUREMENT_NONE: // not measuring break; case N_MEASUREMENT_INIT: // initialization step // set DDS1 to nominal frequency SetCtrlVal(MainPanel, PANEL_DDS1, FrequDDS1); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, FrequDDS1); GetCtrlVal(MainPanel, PANEL_DDS2, &FrequencyDDSBesInit); GetCtrlVal(MainPanel, PANEL_DDS3, &FrequencyDDS3Init); t1_2 = utc; stat_zero(&stat_math1); stat_zero(&stat_ch2); Nu1 = N1 * (250000000 + Math1); // next step Measuring_2 += 1; break; case N_MEASUREMENT_SLOPE: // slope measurement stat_accumulate(&stat_math1, Math1); stat_accumulate(&stat_ch2, Ch2); if ((utc - t1_2) > SlopeTime2) { Slope_2 = stat_math1.slope; Beatslope_2 = stat_ch2.slope; SetCtrlVal(CalcNPanel, CALCN_SLOPE, Beatslope_2); // frep positive step double fDDS1 = FrequDDS1 + DeltakHz_2 * 1000; printf("fDDS1 = %g\n", fDDS1); DDS4xAD9912_RampFrequency(&DDS4xAD9912,1, fDDS1, FREP_STEP_SIZE); SetCtrlVal(MainPanel, PANEL_DDS1, fDDS1); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, fDDS1); // adjust DDS3 to keep beatnote within the bandpass filter. prediction double fDDS3 = FrequencyDDS3Init - DeltakHz_2*1000*(-Sign1/Sign2)*Ndiv*(Nu2)/(Nu1) - Beatslope_2*(utc-t1_2); DeltaDDS3 = fDDS3 - DDS4xAD9912_GetFrequency(&DDS4xAD9912, 3); printf("deltaDDS3 = %g\n", DeltaDDS3); SetCtrlVal(MainPanel, PANEL_DDS3, fDDS3); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 3, fDDS3); // allow counter to settle settling = 3; // next step Measuring_2 += 1; } break; case N_MEASUREMENT_ADJUST_FREQ_PLUS: case N_MEASUREMENT_ADJUST_FREQ_MINUS: // adjust DDS frequency to keep beatnote within the bandpass filter if (settling > 0) { settling--; break; } double fDDS2 = DDS4xAD9912_GetFrequency(&DDS4xAD9912, 2) + 275000 - Ch4; SetCtrlVal(MainPanel, PANEL_DDS2, fDDS2); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 2, fDDS2); double fDDS3 = DDS4xAD9912_GetFrequency(&DDS4xAD9912, 3) + 10000 - Ch2; DeltaDDS3 = DeltaDDS3 + 10000 - Ch2; SetCtrlVal(MainPanel, PANEL_DDS3, fDDS3); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 3, fDDS3); // allow counter to settle settling = 3; // next step Measuring_2 += 1; break; case N_MEASUREMENT_FREP_PLUS: // frep positive step if (settling > 0) { settling--; break; } if (t2_1 == 0.0) t2_1 = utc; Frepplus_2 = Frepplus_2 + Math1 + 250000000 - Slope_2 * (utc - t2_2); Delta10K_Plus = Delta10K_Plus + 10000 - (Ch2 - Beatslope_2 * (utc - t2_2)); n_2 += 1; if ((utc - t2_2) > DeltaT_2) { Frepplus_2 = Frepplus_2 / n_2; Delta10K_Plus = Delta10K_Plus / n_2; n_2 = 0; // negative frequency step double fDDS1 = FrequDDS1 - DeltakHz_2 * 1000; DDS4xAD9912_RampFrequency(&DDS4xAD9912, 1, fDDS1, FREP_STEP_SIZE); SetCtrlVal(MainPanel, PANEL_DDS1, fDDS1); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, fDDS1); // adjust DDS3 to keep beatnote within the bandpass filter. prediction double fDDS3 = FrequencyDDS3Init + DeltakHz_2*1000*(-Sign1/Sign2)*Ndiv*(Nu2)/(Nu1); DeltaDDS3 = fDDS3 - DDS4xAD9912_GetFrequency(&DDS4xAD9912, 3); SetCtrlVal(MainPanel, PANEL_DDS3, fDDS3); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 3, fDDS3); // allow counter to settle settling = 3; // next step Measuring_2 += 1; } break; case N_MEASUREMENT_FREP_MINUS: // frep negative step if (settling > 0) { settling--; break; } if (t3_1 == 0.0) t3_1 = utc; Frepminus_2 = Frepminus_2 + Math1 + 250000000 - Slope_2 * (utc - t3_2); Delta10K_Minus = Delta10K_Minus + 10000 - (Ch2 - Beatslope_2 * (utc - t3_2)); n_2 += 1; if ((utc -t3_2) > DeltaT_2) { Frepminus_2 = Frepminus_2 / n_2; Delta10K_Minus = Delta10K_Minus / n_2; n_2 = 0; // compute N2 N_2 = Sign2*(-DeltaDDS3+Delta10K_Plus-Delta10K_Minus-Beatslope_2*(t3_2-t2_2) )/(Frepminus_2-Frepplus_2-Slope_2*(t3_2-t2_2)); SetCtrlVal(CalcNPanel, CALCN_N, N_2); // back to nominal frequency DDS4xAD9912_RampFrequency(&DDS4xAD9912, 1, FrequDDS1, FREP_STEP_SIZE); SetCtrlVal(MainPanel, PANEL_DDS1, FrequDDS1); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, FrequDDS1); SetCtrlVal(MainPanel, PANEL_DDS2, FrequencyDDSBesInit); DDS4xAD9912_SetFrequency (&DDS4xAD9912, 2, FrequencyDDSBesInit); SetCtrlVal(MainPanel, PANEL_DDS3, FrequencyDDS3Init-Beatslope_2*(utc-t1_2)); DDS4xAD9912_SetFrequency (&DDS4xAD9912, 3, FrequencyDDS3Init-Beatslope_2*(utc-t1_2) ); t1_2 = 0.0; t2_2 = 0.0; t3_2 = 0.0; Frepminus_2 = 0.0; Frepplus_2 = 0.0; Delta10K_Minus = 0.0; Delta10K_Plus = 0.0; // done Measuring_2 = N_MEASUREMENT_NONE; } break; } switch (Measuring_3) { case N_MEASUREMENT_NONE: // not measuring N3 break; case N_MEASUREMENT_INIT: // init SetCtrlVal(MainPanel, 1, FrequDDS1); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, FrequDDS1); settling = 3; t1_3 = utc; stat_zero(&stat_math1); f_rep_plus = f_rep_minus = 0.0; f_beat_Sr_plus = f_beat_Sr_minus = 0.0; // record current DDS frequencies FrequencyDDSBesInit = DDS4xAD9912_GetFrequency(&DDS4xAD9912, 2); FrequencyDDS3Init = DDS4xAD9912_GetFrequency(&DDS4xAD9912, 3); // next step Measuring_3 += 1; break; case N_MEASUREMENT_SLOPE: // slope measurement if (settling > 0) { settling--; break; } stat_accumulate(&stat_math1, Math1); if (utc - t1_3 > SlopeTime3) { // slope measurement f_rep_slope = stat_math1.slope; t2_3 = utc; // frep positive step SetCtrlVal(MainPanel, PANEL_DDS1, FrequDDS1 + DeltakHz_3 * 1000); DDS4xAD9912_RampFrequency(&DDS4xAD9912, 1, FrequDDS1 + DeltakHz_3 * 1000, FREP_STEP_SIZE); // compensate with DDS3 to keep measured beatnote in counter box range double fDDS3 = FrequencyDDS3Init + Sign1 * Sign3 * N3/N1 * Ndiv * DeltakHz_3 * 1000; SetCtrlVal(MainPanel, PANEL_DDS3, fDDS3); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 3, fDDS3); // allow counter to settle settling = 3; // next step Measuring_3 += 1; } break; case N_MEASUREMENT_ADJUST_FREQ_PLUS: case N_MEASUREMENT_ADJUST_FREQ_MINUS: // adjust DDS frequency to keep beatnote within the bandpass filter if (settling > 0) { settling--; break; } // adjust DDS frequency to keep 55 MHz tracker oscillator locked double fDDS2 = DDS4xAD9912_GetFrequency(&DDS4xAD9912, 2) + 275000 - Ch4; SetCtrlVal(MainPanel, PANEL_DDS2, fDDS2); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 2, fDDS2); // allow counter to settle settling = 3; // next step Measuring_3 += 1; break; case N_MEASUREMENT_FREP_PLUS: // frep positive step if (settling > 0) { settling--; break; } n_3++; f_rep_plus += Math1 + 250000000 - f_rep_slope * (utc - t3_2); f_beat_Sr_plus += Ch3; if (utc - t2_3 > DeltaT_3) { // positive step measurement f_rep_plus = f_rep_plus / n_3; f_beat_Sr_plus = f_beat_Sr_plus / n_3; n_3 = 0; t3_3 = utc; // frep negative step SetCtrlVal(MainPanel, PANEL_DDS1, FrequDDS1 - DeltakHz_3 * 1000); DDS4xAD9912_RampFrequency(&DDS4xAD9912, 1, FrequDDS1 - DeltakHz_3 * 1000, FREP_STEP_SIZE); // compensate with DDS3 to keep measured beatnote in counter box range double fDDS3 = FrequencyDDS3Init - Sign1 * Sign3 * N3/N1 * Ndiv * DeltakHz_3 * 1000; SetCtrlVal(MainPanel, PANEL_DDS3, fDDS3); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 3, fDDS3); // allow counter to settle settling = 3; // next step Measuring_3 += 1; } break; case N_MEASUREMENT_FREP_MINUS: // frep negative step if (settling > 0) { settling--; break; } n_3++; f_rep_minus += Math1 + 250000000 - f_rep_slope * (utc - t3_2); f_beat_Sr_minus += Ch3; if (utc - t3_3 > DeltaT_3) { // negative step measurement f_rep_minus = f_rep_minus / n_3; f_beat_Sr_minus = f_beat_Sr_minus / n_3; // check delta frep double delta_f_rep_m = f_rep_plus - f_rep_minus; double delta_f_rep = Ndiv * 2.0 * DeltakHz_3 * 1000.0 / N1; logmsg("delta frep: measured=%.12e Hz expected=%.12e Hz difference=%.12e", delta_f_rep_m, delta_f_rep, delta_f_rep_m - delta_f_rep); logmsg("f_beat_Sr_minus=%.12e", f_beat_Sr_minus); logmsg("f_beat_Sr_plus =%.12e", f_beat_Sr_plus); // compute N3 double delta_f_beat_Sr = f_beat_Sr_plus - f_beat_Sr_minus + 2.0 * Sign1 * Sign3 * N3/N1 * Ndiv * DeltakHz_3 * 1000; double delta_f_beat_Sr_expected = delta_f_rep * N3; logmsg("delta fbeat: measured=%.12e expected=%.12e difference=%.12e", delta_f_beat_Sr, delta_f_beat_Sr_expected, delta_f_beat_Sr - delta_f_beat_Sr_expected); N_3 = delta_f_beat_Sr / delta_f_rep; logmsg("measured N3=%.3f", N_3); SetCtrlVal(CalcNPanel, CALCN_N, N_3); t1_3=0.0; t2_3=0.0; t3_3=0.0; n_3 = 0; // back to nominal frep SetCtrlVal(MainPanel, PANEL_DDS1, FrequDDS1); DDS4xAD9912_RampFrequency(&DDS4xAD9912, 1, FrequDDS1, FREP_STEP_SIZE); // back to initial DDS3 frequency SetCtrlVal(MainPanel, PANEL_DDS3, FrequencyDDS3Init); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 3, FrequencyDDS3Init); // back to initial DDS2 frequency SetCtrlVal(MainPanel, PANEL_DDS2, FrequencyDDSBesInit); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 2, FrequencyDDSBesInit); // done Measuring_3 = N_MEASUREMENT_NONE; } break; } // beatnote sign determination if (Getsign1 == TRUE) { if (utc > tbegin1+2) { if (Math1 > Frepbefore1) Sign1 = -1.0; else Sign1 = +1.0; SetCtrlVal(MainPanel, PANEL_DDS1, Frequency1); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, Frequency1); Getsign1 = FALSE; SetCtrlVal(MainPanel, PANEL_SIGN1, Sign1); } } if (Getsign2 == TRUE) { if (utc > tbegin2+2){ if (Math1 > Frepbefore2) { if (Ch2 > Ch2before) Sign2 = +1.0; else Sign2 = -1.0; } else { if (Ch2 > Ch2before) Sign2 = -1.0; else Sign2 = +1.0; } SetCtrlVal(MainPanel, PANEL_DDS1, Frequency2); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, Frequency2); Getsign2 = FALSE; SetCtrlVal(MainPanel, PANEL_SIGN2, Sign2); } } if (Getsign3 == TRUE) { if (utc > tbegin3+2){ if (Ch3 > Frepbefore3) Sign3 = -1.0; else Sign3 = +1.0; SetCtrlVal(MainPanel, PANEL_DDS3, Frequency3); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 4, Frequency3); Getsign3 = FALSE; SetCtrlVal(MainPanel, PANEL_SIGN3, Sign3); } } // select reference double f = 0.0; switch (dedrift.reference) { case DEDRIFT_REFERENCE_MICROWAVE: f = Math2; break; case DEDRIFT_REFERENCE_HG: f = Ch2 * 1062.5 / 1542.2; break; } // stop dedrift if the comb is not locked if ((dedrift.enabled) & (dedrift.threshold != 0.0) & (freq.previous != 0.0) & (fabs(f - freq.previous) > dedrift.threshold)) { if (! dedrift.keep_slope) { dedrift.applied = 0.0; DDSFox_SetSweepRate(&DDS1xAD9956, dedrift.applied); SetCtrlVal(MainPanel, PANEL_SLOPE_APPLIED, dedrift.applied); } if (! dedrift.keep_freq) { DDSFox_Set(&DDS1xAD9956, dedrift.freq0, dedrift.applied); } stat_zero(&freq); SetCtrlVal(MainPanel, PANEL_SLOPE_MEASURED, freq.slope); dedrift.enabled = FALSE; SetCtrlVal(MainPanel, PANEL_MEASURE_SLOPE, 0); } // dedrifting if (dedrift.enabled) { // update slope measurement stat_accumulate(&freq, f); // update indicator SetCtrlVal(MainPanel, PANEL_SLOPE_MEASURED, freq.slope); // update applied slope if ((utc - dedrift.t0) > dedrift.interval) { if (dedrift.invert) dedrift.applied -= freq.slope; else dedrift.applied += freq.slope; SetCtrlVal(MainPanel, PANEL_SLOPE_APPLIED, dedrift.applied); if (dedrift.doubleslope) DDSFox_SetSweepRate(&DDS1xAD9956, dedrift.applied * 2.0); else DDSFox_SetSweepRate(&DDS1xAD9956, dedrift.applied); logmsg("dedrift update: adjustment=%+3e slope=%+3e", freq.slope, dedrift.applied); stat_zero(&freq); dedrift.t0 = utc; } } // recenter if (recenter.enabled) { rollmean_accumulate(&rollmean_ch2, Ch2); rollmean_accumulate(&rollmean_ch3, Ch3); rollmean_accumulate(&rollmean_ch4, Ch4); if ((utc - recenter.t0) > recenter.interval) { if (recenter.Lo) { // adjust DDS2 frequency to keep Ch4 reading at 275 kHz double freq = DDS4xAD9912_GetFrequency(&DDS4xAD9912, 2); double adj = 275000.0 - rollmean_ch4.mean; freq = freq + adj; SetCtrlVal(MainPanel, PANEL_DDS2, freq); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 2, freq); logmsg("recenter ch4 to 275 kHz: DDS2 adjustment=%+3e", adj); } if (recenter.Hg) { // adjust DDS3 frequency to keep Ch2 reading at 10 kHz double freq = DDS4xAD9912_GetFrequency(&DDS4xAD9912, 3); double adj = 10000 - rollmean_ch2.mean; freq = freq + adj; SetCtrlVal(MainPanel, PANEL_DDS3, freq); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 3, freq); logmsg("recenter Hg beatnote (ch2) to 10 kHz: DDS3 adjustment=%+3e", adj); } if (recenter.Sr) { // adjust DDS3 frequency to keep Ch3 reading at 10 kHz double freq = DDS4xAD9912_GetFrequency(&DDS4xAD9912, 3); double adj = 10000 - rollmean_ch3.mean; freq = freq + adj; SetCtrlVal(MainPanel, PANEL_DDS3, freq); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 3, freq); logmsg("recenter Hg beatnote (ch3) to 10 kHz: DDS3 adjustment=%+3e", adj); } recenter.t0 = utc; rollmean_zero(&rollmean_ch2); rollmean_zero(&rollmean_ch3); rollmean_zero(&rollmean_ch4); } } // local time struct tm *ltime = localtime(&event.time.tv_sec); // round to milliseconds int msec = round(event.time.tv_usec / 1000.0); while (msec >= 1000) { ltime->tm_sec += 1; msec -= 1000; } // format local time char timestr[24]; int len = strftime(timestr, sizeof(timestr), "%d/%m/%Y %H:%M:%S", ltime); snprintf(timestr + len, sizeof(timestr) - len, ".%03d", msec); // display local time SetCtrlVal(MainPanel, PANEL_TIME, timestr); // run id derived from current local date in the form YYMMDD char id[7]; strftime(id, sizeof(id), "%y%m%d", ltime); // write datafiles for (struct datafile *d = datafiles; d->data; d++) datafile_append(d, id, timestr); // send Sr frequency (Math4) to Sr data logger if (Sr_datalogger_enabled) Sr_datalogger_send("FEMTO2", utc, Math4); } break; } } int CVICALLBACK CB_OnFreqPlot (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: for (struct plot *plot = plots; plot->data; plot++) { if (plot->control == control) plot_toggle(plot); } break; } return 0; } int CVICALLBACK CB_OnAllanPlot (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: for (struct adev *adev = adevs; adev->data; adev++) { if (adev->control == control) adev_toggle(adev); } break; } return 0; } int CVICALLBACK CB_ChangeDDSOut (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: double frequency; GetCtrlVal(MainPanel, control, &frequency); switch (control) { case PANEL_DDS1: DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, frequency); break; case PANEL_DDS2: DDS4xAD9912_SetFrequency(&DDS4xAD9912, 2, frequency); break; case PANEL_DDS3: DDS4xAD9912_SetFrequency(&DDS4xAD9912, 3, frequency); break; case PANEL_DDS4: DDS4xAD9912_SetFrequency(&DDS4xAD9912, 4, frequency); break; } break; } return 0; } int CVICALLBACK CB_ChangeDDSStep (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: double step; GetCtrlVal(panel, control, &step); switch (control) { case PANEL_DDS1STEP: SetCtrlAttribute(panel, PANEL_DDS1, ATTR_INCR_VALUE, step); break; case PANEL_DDS2STEP: SetCtrlAttribute(panel, PANEL_DDS2, ATTR_INCR_VALUE, step); break; case PANEL_DDS3STEP: SetCtrlAttribute(panel, PANEL_DDS3, ATTR_INCR_VALUE, step); break; case PANEL_DDS4STEP: SetCtrlAttribute(panel, PANEL_DDS4, ATTR_INCR_VALUE, step); break; } break; } return 0; } int CVICALLBACK CB_ChangeMath (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { int len; char *string; switch (event) { case EVENT_COMMIT: GetCtrlAttribute(panel, control, ATTR_STRING_TEXT_LENGTH, &len); string = (char *)malloc(sizeof(char) * (len + 1)); GetCtrlVal(panel, control, string); switch (control) { case PANEL_MATHSTRING1: mupSetExpr(MathParser1, string); break; case PANEL_MATHSTRING2: mupSetExpr(MathParser2, string); break; case PANEL_MATHSTRING3: mupSetExpr(MathParser3, string); break; case PANEL_MATHSTRING4: mupSetExpr(MathParser4, string); break; case PANEL_MATHSTRING5: mupSetExpr(MathParser5, string); break; } free(string); break; } return 0; } int CVICALLBACK CB_ChangeN (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: switch (control) { case PANEL_N1CHOICE: GetCtrlVal(panel, control, &N1); break; case PANEL_N2CHOICE: GetCtrlVal(panel, control, &N2); break; case PANEL_N3CHOICE: GetCtrlVal(panel, control, &N3); break; } break; } return 0; } int CVICALLBACK CB_OnPlus10k (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { double Frequency ; switch (event) { case EVENT_COMMIT: switch (control) { case PANEL_PLUS10KDDS1: GetCtrlVal(MainPanel, PANEL_DDS1, &Frequency); Frequency += 10000.0; DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, Frequency); SetCtrlVal(MainPanel, PANEL_DDS1, Frequency); break; case PANEL_PLUS10KDDS2: GetCtrlVal(MainPanel, PANEL_DDS2, &Frequency); Frequency += 10000.0; DDS4xAD9912_SetFrequency(&DDS4xAD9912, 2, Frequency); SetCtrlVal(MainPanel, PANEL_DDS2, Frequency); break; case PANEL_PLUS10KDDS3: GetCtrlVal(MainPanel, PANEL_DDS3, &Frequency); Frequency += 10000.0; DDS4xAD9912_SetFrequency(&DDS4xAD9912, 3, Frequency); SetCtrlVal(MainPanel, PANEL_DDS3, Frequency); break; case PANEL_PLUS10KDDS4: GetCtrlVal(MainPanel, PANEL_DDS4, &Frequency); Frequency += 10000.0; DDS4xAD9912_SetFrequency(&DDS4xAD9912, 4, Frequency); SetCtrlVal(MainPanel, PANEL_DDS4, Frequency); break; } break; } return 0; } int CVICALLBACK CB_OnMinus10k (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { double Frequency; switch (event) { case EVENT_COMMIT: switch (control) { case PANEL_MINUS10KDDS1: GetCtrlVal(MainPanel, PANEL_DDS1, &Frequency); Frequency -= 10000.0; DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, Frequency); SetCtrlVal(MainPanel, PANEL_DDS1, Frequency); break; case PANEL_MINUS10KDDS2: GetCtrlVal(MainPanel, PANEL_DDS2, &Frequency); Frequency -= 10000.0; DDS4xAD9912_SetFrequency(&DDS4xAD9912, 2, Frequency); SetCtrlVal(MainPanel, PANEL_DDS2, Frequency); break; case PANEL_MINUS10KDDS3: GetCtrlVal(MainPanel, PANEL_DDS3, &Frequency); Frequency -= 10000.0; DDS4xAD9912_SetFrequency(&DDS4xAD9912, 3, Frequency); SetCtrlVal(MainPanel, PANEL_DDS3, Frequency); break; case PANEL_MINUS10KDDS4: GetCtrlVal(MainPanel, PANEL_DDS4, &Frequency); Frequency -= 10000.0; DDS4xAD9912_SetFrequency(&DDS4xAD9912, 4, Frequency); SetCtrlVal(MainPanel, PANEL_DDS4, Frequency); break; } break; } return 0; } int CVICALLBACK CB_OnAcceptN (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: switch (measuring) { case MEASURING_N_Lo: N1 = round(N_1); SetCtrlVal(MainPanel, PANEL_N1CHOICE, N1); break; case MEASURING_N_Hg: N2 = round(N_2); SetCtrlVal(MainPanel, PANEL_N2CHOICE, N2); break; case MEASURING_N_Sr: N3 = round(N_3); SetCtrlVal(MainPanel, PANEL_N3CHOICE, N3); break; } break; } return 0; } int CVICALLBACK CB_OnNCalculus (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { int visible; switch (event) { case EVENT_COMMIT: switch (control) { case PANEL_N1CALCULUS: GetPanelAttribute(CalcNPanel, ATTR_VISIBLE, &visible); if (! visible) { measuring = MEASURING_N_Lo; SetCtrlVal(CalcNPanel, CALCN_INTEGRATIONTIME, DeltaT_1); SetCtrlVal(CalcNPanel, CALCN_SLOPETIME, SlopeTime1); SetCtrlVal(CalcNPanel, CALCN_DELTAFREQ, DeltakHz_1); SetPanelAttribute(CalcNPanel, ATTR_TITLE, "Measure N_Lo"); SetCtrlVal(CalcNPanel, CALCN_SLOPE, 0.0); SetCtrlVal(CalcNPanel, CALCN_N, 0.0); DisplayPanel(CalcNPanel); } break; case PANEL_N2CALCULUS: GetPanelAttribute(CalcNPanel, ATTR_VISIBLE, &visible); if (! visible) { measuring = MEASURING_N_Hg; SetCtrlVal(CalcNPanel, CALCN_INTEGRATIONTIME, DeltaT_2); SetCtrlVal(CalcNPanel, CALCN_SLOPETIME, SlopeTime2); SetCtrlVal(CalcNPanel, CALCN_DELTAFREQ, DeltakHz_2); SetPanelAttribute(CalcNPanel, ATTR_TITLE, "Measure N_Hg"); SetCtrlVal(CalcNPanel, CALCN_SLOPE, 0.0); SetCtrlVal(CalcNPanel, CALCN_N, 0.0); DisplayPanel(CalcNPanel); } break; case PANEL_N3CALCULUS: GetPanelAttribute(CalcNPanel, ATTR_VISIBLE, &visible); if (! visible) { measuring = MEASURING_N_Sr; SetCtrlVal(CalcNPanel, CALCN_INTEGRATIONTIME, DeltaT_3); SetCtrlVal(CalcNPanel, CALCN_SLOPETIME, SlopeTime3); SetCtrlVal(CalcNPanel, CALCN_DELTAFREQ, DeltakHz_3); SetPanelAttribute(CalcNPanel, ATTR_TITLE, "Measure N_Sr"); SetCtrlVal(CalcNPanel, CALCN_SLOPE, 0.0); SetCtrlVal(CalcNPanel, CALCN_N, 0.0); DisplayPanel(CalcNPanel); } break; } break; } return 0; } int CVICALLBACK CB_OnStartNCalculus (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: switch (measuring) { case MEASURING_N_Lo: GetCtrlVal(CalcNPanel, CALCN_INTEGRATIONTIME, &DeltaT_1); GetCtrlVal(CalcNPanel, CALCN_SLOPETIME, &SlopeTime1); GetCtrlVal(CalcNPanel, CALCN_DELTAFREQ, &DeltakHz_1); Measuring_1 = TRUE; break; case MEASURING_N_Hg: GetCtrlVal(CalcNPanel, CALCN_INTEGRATIONTIME, &DeltaT_2); GetCtrlVal(CalcNPanel, CALCN_SLOPETIME, &SlopeTime2); GetCtrlVal(CalcNPanel, CALCN_DELTAFREQ, &DeltakHz_2); Measuring_2 = TRUE; break; case MEASURING_N_Sr: GetCtrlVal(CalcNPanel, CALCN_INTEGRATIONTIME, &DeltaT_3); GetCtrlVal(CalcNPanel, CALCN_SLOPETIME, &SlopeTime3); GetCtrlVal(CalcNPanel, CALCN_DELTAFREQ, &DeltakHz_3); Measuring_3 = TRUE; break; } break; } return 0; } int CVICALLBACK CB_OnNStop (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: HidePanel(CalcNPanel); switch (measuring) { case MEASURING_N_Lo: Measuring_1 = FALSE; SetCtrlVal(MainPanel, PANEL_DDS1, FrequDDS1); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, FrequDDS1); SetCtrlVal(MainPanel, PANEL_DDS2, FrequencyDDSBesInit); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 2, FrequencyDDSBesInit); break; case MEASURING_N_Hg: Measuring_2 = FALSE; SetCtrlVal(MainPanel, PANEL_DDS1, FrequDDS1); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, FrequDDS1); SetCtrlVal(MainPanel, PANEL_DDS2, FrequencyDDSBesInit); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 2, FrequencyDDSBesInit); SetCtrlVal(MainPanel, PANEL_DDS3, FrequencyDDS3Init); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 3, FrequencyDDS3Init); break; case MEASURING_N_Sr: Measuring_3 = FALSE; SetCtrlVal(MainPanel, PANEL_DDS1, FrequDDS1); DDS4xAD9912_RampFrequency(&DDS4xAD9912, 1, FrequDDS1, FREP_STEP_SIZE); SetCtrlVal(MainPanel, PANEL_DDS2, FrequencyDDSBesInit); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 2, FrequencyDDSBesInit); SetCtrlVal(MainPanel, PANEL_DDS3, FrequencyDDS3Init); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 3, FrequencyDDS3Init); break; } break; } return 0; } int CVICALLBACK CB_OnFindSign (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: switch (control) { case PANEL_FINDSIGN1: tbegin1 = utc; Frepbefore1 = Math1; GetCtrlVal(MainPanel, PANEL_DDS1, &Frequency1) ; SetCtrlVal(MainPanel, PANEL_DDS1, Frequency1+Frequencystep1) ; DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, Frequency1+Frequencystep1); Getsign1 = TRUE; break; case PANEL_FINDSIGN2: tbegin2 = utc; Frepbefore2 = Math1; Ch2before = Ch2; GetCtrlVal(MainPanel, PANEL_DDS1, &Frequency2) ; SetCtrlVal(MainPanel, PANEL_DDS1, Frequency2+Frequencystep2) ; DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, Frequency2+Frequencystep2); Getsign2 = TRUE; break; case PANEL_FINDSIGN3: tbegin3 = utc; Frepbefore3 = Math1; GetCtrlVal(MainPanel, PANEL_DDS4, &Frequency3) ; SetCtrlVal(MainPanel, PANEL_DDS4, Frequency3+Frequencystep3) ; DDS4xAD9912_SetFrequency(&DDS4xAD9912, 4, Frequency3+Frequencystep3); Getsign3 = TRUE; break; } break; } return 0; } int CVICALLBACK CB_OnFind275K (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { double frequency; switch (event) { case EVENT_COMMIT: switch (control) { case PANEL_FIND275K2: GetCtrlVal(MainPanel, PANEL_DDS2, &frequency); frequency = frequency + 275000 - Ch4; SetCtrlVal(MainPanel, PANEL_DDS2, frequency) ; DDS4xAD9912_SetFrequency(&DDS4xAD9912, 2, frequency); break; case PANEL_FIND10K3: GetCtrlVal(MainPanel, PANEL_DDS3, &frequency); frequency = frequency + 10000 - Ch2; SetCtrlVal(MainPanel, PANEL_DDS3, frequency); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 3, frequency); break; } break; } return 0; } int CVICALLBACK CB_OnChangeNdiv (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: GetCtrlVal(MainPanel, PANEL_CHANGENDIV, &Ndiv); FrequDDS1 = 880000000.0 / Ndiv; SetCtrlVal(MainPanel, PANEL_DDS1, FrequDDS1); DDS4xAD9912_SetFrequency(&DDS4xAD9912, 1, FrequDDS1); break; } return 0; } int CVICALLBACK CB_MeasureSlope (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: GetCtrlVal(panel, control, &dedrift.enabled); if (dedrift.enabled) { dedrift.t0 = utc; stat_zero(&freq); logmsg("dedrift start"); } else { if (! dedrift.keep_slope) { dedrift.applied = 0.0; DDSFox_SetSweepRate(&DDS1xAD9956, dedrift.applied); SetCtrlVal(MainPanel, PANEL_SLOPE_APPLIED, dedrift.applied); } if (! dedrift.keep_freq) { DDSFox_Set(&DDS1xAD9956, dedrift.freq0, dedrift.applied); } stat_zero(&freq); SetCtrlVal(panel, PANEL_SLOPE_MEASURED, freq.slope); logmsg("dedrift stop"); } break; } return 0; } int CVICALLBACK CB_OnResetSlope (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: dedrift.applied = 0.0; SetCtrlVal(panel, PANEL_SLOPE_APPLIED, dedrift.applied); DDSFox_Set(&DDS1xAD9956, dedrift.freq0, dedrift.applied); logmsg("dedrift reset"); break; } return 0; } int CVICALLBACK CB_ChangeSlopeTime (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: GetCtrlVal(MainPanel, PANEL_SLOPETIME, &dedrift.interval); break; } return 0; } int CVICALLBACK CB_OnCROX (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: switch (control) { case PANEL_CHECKBOX_KEEP: // keep current dedrifting frequency when dedrifting is disabled GetCtrlVal(MainPanel, PANEL_CHECKBOX_KEEP, &dedrift.keep_freq); break; case PANEL_CHECKBOX_KEEPSLOPE: // keep current dedrifting slope when dedrifting is disabled GetCtrlVal(MainPanel, PANEL_CHECKBOX_KEEPSLOPE, &dedrift.keep_slope); break; } break; } return 0; } int CVICALLBACK CB_RecenterEnable (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: GetCtrlVal(panel, control, &recenter.enabled); recenter.t0 = utc; rollmean_zero(&rollmean_ch2); rollmean_zero(&rollmean_ch3); rollmean_zero(&rollmean_ch4); break; } return 0; } int CVICALLBACK CB_OnStopSlopeCancellingOnUnlocked (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { int value; switch (event) { case EVENT_COMMIT: GetCtrlVal(MainPanel, PANEL_CHECKBOX_STOPIFAUTODE, &value); dedrift.threshold = value ? 100.0 : 0.0; break; } return 0; } int CVICALLBACK CB_OnSlopeReference (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: GetCtrlVal(MainPanel, PANEL_SLOPE_REFERENCE, &dedrift.reference); break; } return 0; } int CVICALLBACK CB_OnEstimateN (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { int visible; double wl; switch (event) { case EVENT_COMMIT: // be prepared to support more N estimates for different beat notes switch (control) { case PANEL_ESTIMATE_N3: GetPanelAttribute(EstimateN3Panel, ATTR_VISIBLE , &visible); if (! visible) DisplayPanel(EstimateN3Panel); // set current frep SetCtrlVal(EstimateN3Panel, ESTIMATEN3_FREP, 250e6 + Math1); // default wavelenght for Sr cavity GetCtrlVal(EstimateN3Panel, ESTIMATEN3_WAVELENGTH, &wl); if (wl == 0.0) SetCtrlVal(EstimateN3Panel, ESTIMATEN3_WAVELENGTH, 698.446); // reset N3 estimate SetCtrlVal(EstimateN3Panel, ESTIMATEN3_N, 0.0); break; } break; } return 0; } int CVICALLBACK CB_OnNEstimateCancel (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { int visible; switch (event) { case EVENT_COMMIT: GetPanelAttribute(panel, ATTR_VISIBLE, &visible); if (visible) HidePanel(panel); break; } return 0; } int CVICALLBACK CB_OnNEstimateSet (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: GetCtrlVal(panel, ESTIMATEN3_N, &N3); SetCtrlVal(MainPanel, PANEL_N3CHOICE, N3); HidePanel(panel); break; } return 0; } int CVICALLBACK CB_OnNEstimate (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { double frep, wl, N; switch (event) { case EVENT_COMMIT: GetCtrlVal(panel, ESTIMATEN3_FREP, &frep); GetCtrlVal(panel, ESTIMATEN3_WAVELENGTH, &wl); N = round(299792458.0 / wl / 1e-9 / frep); SetCtrlVal(panel, ESTIMATEN3_N, N); break; } return 0; } int CVICALLBACK CB_SetSlope (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: GetCtrlVal(panel, control, &dedrift.applied); DDSFox_SetSweepRate(&DDS1xAD9956, dedrift.applied); break; } return 0; } int CVICALLBACK CB_InvertSlopeSign (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: GetCtrlVal(panel, control, &dedrift.invert); break; } return 0; } int CVICALLBACK CB_ResetDedriftDDS (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: // stop slope measurement and reset slope dedrift.enabled = FALSE; SetCtrlVal(panel, PANEL_MEASURE_SLOPE, 0); dedrift.applied = 0.0; SetCtrlVal(panel, PANEL_SLOPE_APPLIED, dedrift.applied); // reset DDS DDSFox_Reset(&DDS1xAD9956); DDSFox_SetProfile(&DDS1xAD9956); DDSFox_SetDiv(&DDS1xAD9956, 1); DDSFox_Set(&DDS1xAD9956, dedrift.freq0, 0.0); break; } return 0; } int CVICALLBACK CB_ShowLog (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { int visible; switch (event) { case EVENT_COMMIT: GetCtrlVal(panel, PANEL_SHOWLOG, &visible); SetPanelAttribute(LoggingPanel, ATTR_VISIBLE, visible); break; } return 0; } int CVICALLBACK CB_OnLoggingPanelEvent(int panel, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_CLOSE: SetPanelAttribute(LoggingPanel, ATTR_VISIBLE, 0); SetCtrlVal(MainPanel, PANEL_SHOWLOG, 0); break; } return 0; } int CVICALLBACK CB_Sign3 (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: GetCtrlVal(panel, control, &Sign3); break; } return 0; } int CVICALLBACK CB_SlopeX2 (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: GetCtrlVal(panel, control, &dedrift.doubleslope); break; } return 0; } int CVICALLBACK CB_SaveData (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: for (struct datafile *d = datafiles; d->data; d++) { if (d->control == control) GetCtrlVal(panel, control, &(d->write)); } break; } return 0; } int CVICALLBACK CB_RecenterInterval (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: GetCtrlVal(panel, control, &recenter.interval); break; } return 0; } int CVICALLBACK CB_RecenterChannel (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: switch (control) { case PANEL_RECENTER_LO: GetCtrlVal(panel, control, &recenter.Lo); break; case PANEL_RECENTER_HG: GetCtrlVal(panel, control, &recenter.Hg); break; case PANEL_RECENTER_SR: GetCtrlVal(panel, control, &recenter.Sr); break; } break; } return 0; } int CVICALLBACK CB_DedriftDDSFreq (int panel, int control, int event, void *callbackData, int eventData1, int eventData2) { switch (event) { case EVENT_COMMIT: GetCtrlVal(panel, control, &dedrift.freq0); DDSFox_Set(&DDS1xAD9956, dedrift.freq0, dedrift.applied); break; } return 0; }