annotate m-toolbox/test/LTPDA_training/topic5/TrainigSession_T5_Ex05.m @ 49:0bcdf74587d1 database-connection-manager

Cleanup
author Daniele Nicolodi <nicolodi@science.unitn.it>
date Wed, 07 Dec 2011 17:24:36 +0100
parents f0afece42f48
children
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
0
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
1 % Training session Topic 5 exercise 05
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
2 %
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
3 % Fitting time series with xfit
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
4 %
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
5 % ao/xfit uses a full non-linear least square algorithm to fit data. Here
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
6 % the main features will be described to fit an up-chirp sine.
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
7 %
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
8 % 1) Load time series data
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
9 % 2) Define the model to fit
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
10 % 3) Inspect data in order to find an initial guess
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
11 % 4) Fit data with ao/xfit starting from that guess
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
12 % 5) Check results
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
13 % 6) Fit again by changing the fitting algorithm (fminunc will be used)
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
14 % 7) Check results
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
15 % 8) Fit again by using a Monte Carlo search
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
16 % 9) Check results
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
17 % 10) Final fit with the full model (data bias included)
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
18 % 11) Check results
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
19 % 12) Comments
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
20 %
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
21 % Trento, 01-03-2010
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
22 % Giuseppe Congedo
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
23 %
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
24 % $Id: TrainigSession_T5_Ex05.m,v 1.3 2011/05/13 15:13:12 ingo Exp $
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
25 %
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
26 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
27
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
28 %% 1) load tsdata
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
29
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
30 % load test noise AO from file
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
31 data = ao(plist('filename', 'topic5/T5_Ex05_TestNoise.xml'));
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
32 data.setName;
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
33
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
34 % look at data
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
35 iplot(data)
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
36 % iplot(abs(fft(data)))
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
37 % iplot(psd(data))
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
38
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
39 %% 2) set the model
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
40
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
41 % try a linearly chirped sine wave with a bias
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
42 mdl = smodel('a + P1.*sin(2.*pi.*(P2 + P3.*t).*t + P4)');
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
43 mdl.setParams({'a', 'P1', 'P2', 'P3', 'P4'});
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
44 mdl.setXvar('t');
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
45 mdl.subs('a',5); % set additional parameters - data bias
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
46
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
47 %% 3) try to find an initial guess
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
48
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
49 % plot the tentative model
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
50 mdlTry = mdl.setValues([4 1e-4 1e-5 0]);
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
51 mdlTry.setXvals(data.x);
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
52 iplot(data,mdlTry.eval)
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
53
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
54 %% 4) xfit from an initial guess
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
55
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
56 % fit plist
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
57 plfit = plist('Function', mdl, ...
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
58 'P0', [4 1e-4 1e-5 0], ... % set initial guess for the parameters
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
59 'LB', [2 1e-6 1e-6 0], ... % set lower bounds for parameters
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
60 'UB', [5 1e-2 1e-2 2*pi] ... % set upper bounds for parameters
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
61 );
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
62
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
63 % do fit
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
64 params = xfit(data, plfit)
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
65
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
66 %% 5) check results
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
67
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
68 bestMdl = eval(params);
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
69
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
70 % plotting results
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
71 iplot(data,bestMdl)
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
72 iplot(data-bestMdl)
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
73 iplot(psd(data-bestMdl))
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
74
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
75 % Comments.
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
76 % Fit is not so bad, but let's now try to change the fitting algorithm.
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
77
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
78 %% 6) xfit from an initial guess (change algorithm)
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
79
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
80 % fit plist
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
81 plfit = plist('Function', mdl, ...
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
82 'P0', [4 1e-4 1e-5 0], ... % set initial guess for the parameters
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
83 'LB', [2 1e-6 1e-6 0], ... % set lower bounds for parameters
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
84 'UB', [5 1e-2 1e-2 2*pi], ... % set upper bounds for parameters
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
85 'algorithm', 'fminunc'); % set fitting algorithm
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
86
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
87 % do fit
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
88 params = xfit(data, plfit)
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
89
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
90 %% 7) check results
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
91
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
92 bestMdl = eval(params);
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
93
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
94 % plotting results
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
95 iplot(data,bestMdl)
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
96 iplot(data-bestMdl)
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
97 iplot(psd(data-bestMdl))
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
98
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
99 % Comments.
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
100 % Fit is not so bad: an improvement with respect to using fminsearch.
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
101 % Let's now try to do a Monte Carlo search.
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
102
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
103 %% 8) xfit from a Monte Carlo search (bounds are shrinked about the best-fit found above)
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
104
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
105 % fit plist
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
106 plfit = plist('Function', mdl, ...
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
107 'LB', [2.5 1e-5 1e-6 0], ... % set lower bounds for parameters
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
108 'UB', [3.5 1e-3 1e-4 2*pi], ... % set upper bounds for parameters
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
109 'algorithm', 'fminunc', ... % set fitting algorithm
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
110 'MonteCarlo', 'y', 'Npoints', 1e4); % set the number of points in the parameter space
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
111
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
112 % do fit
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
113 params = xfit(data, plfit)
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
114
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
115 %% 9) check results
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
116
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
117 bestMdl = eval(params);
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
118
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
119 % plotting results
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
120 iplot(data,bestMdl)
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
121 iplot(data-bestMdl)
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
122 iplot(psd(data-bestMdl))
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
123
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
124 % Comments.
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
125 % Fit is not so bad: no further improvements with respect to the previous fit.
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
126 % Let's now try to fit the full model by doing a Monte Carlo search.
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
127
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
128 %% 10) xfit with full model
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
129
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
130 % set the full model (including the data bias)
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
131 mdl = smodel('a + P1.*sin(2.*pi.*(P2 + P3.*t).*t + P4)');
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
132 mdl.setParams({'a', 'P1', 'P2', 'P3', 'P4'});
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
133 mdl.setXvar('t');
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
134
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
135 % fit plist
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
136 plfit = plist('Function', mdl, ...
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
137 'P0', [5 3.01 7.27e-5 1.00e-5 0.325], ... % set initial guess for the parameters
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
138 'LB', [4 2.5 1e-5 1e-6 0], ... % set lower bounds for parameters
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
139 'UB', [6 3.5 1e-3 1e-4 2*pi], ... % set upper bounds for parameters
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
140 'algorithm', 'fminunc' ... % set fitting algorithm
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
141 );
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
142
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
143 % do fit
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
144 params = xfit(data, plfit)
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
145
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
146 %% 11) check results
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
147
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
148 bestMdl = eval(params);
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
149
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
150 % plotting results
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
151 iplot(data,bestMdl)
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
152 iplot(data-bestMdl)
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
153 iplot(psd(data-bestMdl))
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
154
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
155 % Comments.
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
156 % Fit is good, even for the full model (including bias).
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
157
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
158 %% 12) Comments
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
159
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
160 % Let's compare the fit results with the real parameters.
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
161 %
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
162 % Firstly, data were generated with the set of parameters:
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
163 % a = 5
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
164 % P1 = 3
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
165 % P2 = 1e-4
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
166 % P3 = 1e-5
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
167 % P4 = 0.3
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
168 %
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
169 % In the end, the fit results are
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
170 % chi2 = 1.03
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
171 % dof = 995
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
172 % a = 4.965 +/- 0.033
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
173 % P1 = 3.018 +/- 0.047
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
174 % P2 = 6.6e-5 +/- 3.1e-5
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
175 % P3 = 1.0032e-5 +/- 3.1e-8
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
176 % P4 = 0.334 +/- 0.043
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
177 % Quite in well accordance with expected values!
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
178 %
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
179 % Are they biased? No, they are not. Indeed:
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
180 % (p_fit - p_true)/dp = ...
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
181 % 1.1
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
182 % 0.39
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
183 % 1.1
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
184 % 1.1
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
185 % 0.80
f0afece42f48 Import.
Daniele Nicolodi <nicolodi@science.unitn.it>
parents:
diff changeset
186 % Very good.