Mercurial > hg > ltpda
comparison m-toolbox/classes/+utils/@math/csd2tf.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f0afece42f48 |
---|---|
1 % CSD2TF Input cross spectral density matrix and output stable transfer function | |
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
3 % | |
4 % DESCRIPTION: | |
5 % | |
6 % Input cross spectral density (csd) and output corresponding | |
7 % stable functions. Identification can be performed for a simple system | |
8 % (one psd) or for a N dimensional system. Discrete transfer functions are | |
9 % output in partial fraction expansion: | |
10 % | |
11 % r1 rN | |
12 % f(z) = ----------- + ... + ----------- + d | |
13 % 1-p1*z^{-1} 1-pN*z^{-1} | |
14 % | |
15 % System identification is performed in frequency domain, the order of | |
16 % the model function is automatically chosen by the algorithm on the | |
17 % base of the input tolerance condition. | |
18 % In the case of simple systems the square root of the psd is fitted | |
19 % and then the model is stabilized by the application of an all-pass | |
20 % function. | |
21 % In the case of two dimensional systems, transfer functions frequency | |
22 % response is calculated by the eigendecomposition of the | |
23 % cross-spectral matrix. Then models are identified by fitting | |
24 % in frequency domain. | |
25 % | |
26 % CALL: | |
27 % out = csd2tf(csd,f,params) | |
28 % | |
29 % INPUT: | |
30 % | |
31 % - csd is the cross spectral density matrix. It is in general a | |
32 % [n,n,m] dimensional matrix. Where n is the dimension of the system | |
33 % and m is the number of frequencies | |
34 % - f: is the corresponding frequencies vector in Hz (of length m) | |
35 % - params: is a struct of identification options, the possible values | |
36 % are: | |
37 % | |
38 % params.fullauto = 0 --> Perform a fitting loop as far as the number | |
39 % of iteration reach Nmaxiter. The order of the fitting function will | |
40 % be that specified in params.minorder. If params.dterm is setted to | |
41 % 1 the function will fit only with direct term. | |
42 % params.fullauto = 1 --> Parform a full automatic search for the | |
43 % transfer function order. The fitting procedure will stop when the | |
44 % stopping condition defined in params.ctp is satisfied. Default | |
45 % value. | |
46 % | |
47 % - params.Nmaxiter = # set the maximum number of fitting steps | |
48 % performed for each trial function order. Default is 50 | |
49 % | |
50 % - params.minorder = # set the minimum possible function order. | |
51 % Default is 2 | |
52 % | |
53 % - params.maxorder = # set the maximum possible function order. | |
54 % Default is 25 | |
55 % | |
56 % params.spolesopt = 1 --> use real starting poles | |
57 % params.spolesopt = 2 --> generates complex conjugates poles of the | |
58 % type \alfa e^{j\pi\theta} with \theta = linspace(0,pi,N/2+1). | |
59 % params.spolesopt = 3 --> generates complex conjugates poles of the | |
60 % type \alfa e^{j\pi\theta} with \theta = linspace(0,pi,N/2+2). | |
61 % Default option. | |
62 % | |
63 % - params.weightparam = 0 --> use external weights | |
64 % - params.weightparam = 1 equal weights (one) for each point | |
65 % - params.weightparam = 2 weight with the inverse of absolute value | |
66 % of fitting data | |
67 % - params.weightparam = 3 weight with square root of the inverse of | |
68 % absolute value of fitting data | |
69 % - params.weightparam = 4 weight with the inverse of the square mean | |
70 % spread | |
71 % | |
72 % params.extweights = [] --> A vector of externally provided weights. | |
73 % It has to be of the same size of input data. | |
74 % | |
75 % - params.plot = 0 --> no plot during fit iteration | |
76 % - params.plot = 1 --> plot results at each fitting steps. default | |
77 % value. | |
78 % | |
79 % - params.ctp = 'chival' --> check if the value of the Mean Squared | |
80 % Error is lower than 10^(-1*lsrcond). | |
81 % - params.ctp = 'chivar' --> check if the value of the Mean Squared | |
82 % Error is lower than 10^(-1*lsrcond) and if the relative variation of mean | |
83 % squared error is lower than 10^(-1*msevar). | |
84 % - params.ctp = 'lrs' --> check if the log difference between data and | |
85 % residuals is point by point larger than the value indicated in | |
86 % lsrcond. This mean that residuals are lsrcond order of magnitudes | |
87 % lower than data. | |
88 % - params.ctp = 'lrsmse' --> check if the log difference between data | |
89 % and residuals is larger than the value indicated in lsrcond and if | |
90 % the relative variation of mean squared error is lower than | |
91 % 10^(-1*msevar). | |
92 % | |
93 % - params.lrscond = # --> set conditioning value for point to point | |
94 % log residuals difference (params.ctp = 'lsr') and mean log residual | |
95 % difference (params.ctp = 'mlsrvar'). Default is 2. See help for | |
96 % stopfit.m for further remarks. | |
97 % | |
98 % - params.msevar = # --> set conditioning value for root mean squared | |
99 % error variation. This allow to check that the relative variation of | |
100 % mean squared error is lower than 10^(-1*msevar).Default is 7. See | |
101 % help for stopfit.m for further remarks. | |
102 % | |
103 % - params.fs set the sampling frequency (Hz). Default is 1 Hz | |
104 % | |
105 % params.dterm = 0 --> Try to fit without direct term | |
106 % params.dterm = 1 --> Try to fit with and without direct term | |
107 % | |
108 % params.spy = 0 --> Do not display the iteration progression | |
109 % params.spy = 1 --> Display the iteration progression | |
110 % | |
111 % | |
112 % OUTPUT: | |
113 % | |
114 % - ostruct is a struct with the fields: | |
115 % - ostruct(n).res --> is the vector of residues. | |
116 % - ostruct(n).poles --> is the vector of poles. | |
117 % - ostruct(n).dterm --> is the vector of direct terms. | |
118 % - ostruct(n).mresp --> is the vector of tfs models responses. | |
119 % - ostruct(n).rdl --> is the vector of fit residuals. | |
120 % - ostruct(n).mse --> is the vector of mean squared errors. | |
121 % | |
122 % | |
123 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
124 % | |
125 % VERSION: $Id: csd2tf.m,v 1.1 2009/04/23 09:56:28 luigi Exp $ | |
126 % | |
127 % HISTORY: 22-04-2009 L Ferraioli | |
128 % Creation | |
129 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
130 function ostruct = csd2tf(csd,f,params) | |
131 | |
132 utils.helper.msg(utils.const.msg.MNAME, 'running %s/%s', mfilename('class'), mfilename); | |
133 | |
134 % Collect inputs | |
135 | |
136 % Default input struct | |
137 defaultparams = struct('Nmaxiter',50, 'minorder',2,... | |
138 'maxorder',25, 'spolesopt',2, 'weightparam',1, 'plot',0,... | |
139 'ctp','chival','lrscond',2,'msevar',2,... | |
140 'fs',1,'dterm',0, 'spy',0, 'fullauto',1,... | |
141 'extweights', []); | |
142 | |
143 names = {'Nmaxiter','minorder','maxorder','spolesopt',... | |
144 'weightparam','plot','stopfitcond',... | |
145 'ctp','lrscond','msevar',... | |
146 'fs','dterm','spy','fullauto','extweights'}; | |
147 | |
148 % collecting input and default params | |
149 if ~isempty(params) | |
150 for jj=1:length(names) | |
151 if isfield(params, names(jj)) && ~isempty(params.(names{1,jj})) | |
152 defaultparams.(names{1,jj}) = params.(names{1,jj}); | |
153 end | |
154 end | |
155 end | |
156 | |
157 % default values for input variables | |
158 Nmaxiter = defaultparams.Nmaxiter; % Number of max iteration in the fitting loop | |
159 minorder = defaultparams.minorder; % Minimum model order | |
160 maxorder = defaultparams.maxorder; % Maximum model order | |
161 spolesopt = defaultparams.spolesopt; % 0, Fit with no complex starting poles (complex poles can be found as fit output). 1 fit with comples starting poles | |
162 weightparam = defaultparams.weightparam; % Weight 1./abs(y). Admitted values are 0, 1, 2, 3 | |
163 checking = defaultparams.plot; % Never polt. Admitted values are 0 (No polt ever), 1 (plot at the end), 2 (plot at each step) | |
164 ctp = defaultparams.ctp; | |
165 lrscond = defaultparams.lrscond; | |
166 msevar = defaultparams.msevar; | |
167 fs = defaultparams.fs; % sampling frequency | |
168 idt = defaultparams.dterm; | |
169 spy = defaultparams.spy; | |
170 autosearch = defaultparams.fullauto; | |
171 extweights = defaultparams.extweights; | |
172 | |
173 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
174 % Checking inputs | |
175 | |
176 [a,b] = size(f); | |
177 if a < b % shifting to column | |
178 f = f.'; | |
179 end | |
180 | |
181 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
182 % switching between inputs | |
183 | |
184 clear dim | |
185 % cecking for dimensionality | |
186 [nn,mm,kk] = size(csd); | |
187 if kk == 1 | |
188 dim = '1dim'; | |
189 utils.helper.msg(utils.const.msg.PROC1, ' Performing one dimesional identification on psd ') | |
190 if nn < mm % shift to column | |
191 csd = csd.'; | |
192 end | |
193 else | |
194 dim ='ndim'; | |
195 utils.helper.msg(utils.const.msg.PROC1, ' Performing N dimesional identification on csd ') | |
196 end | |
197 | |
198 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
199 % system identification | |
200 | |
201 switch dim | |
202 case '1dim' | |
203 | |
204 utils.helper.msg(utils.const.msg.PROC1, ' Performing z-domain identification ') | |
205 itf = abs(sqrt(csd)); % input data | |
206 | |
207 % Fitting params | |
208 params = struct('spolesopt',spolesopt, 'Nmaxiter',Nmaxiter, 'minorder',minorder,... | |
209 'maxorder',maxorder, 'weightparam',weightparam, 'plot',checking,... | |
210 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... | |
211 'stabfit',0,'dterm',idt,'spy',spy,'fullauto',autosearch,'extweights',extweights); | |
212 | |
213 % Fitting | |
214 utils.helper.msg(utils.const.msg.PROC1, ' Fitting absolute TF value with unstable model ') | |
215 [res,poles,dterm,mresp,rdl,msei] = utils.math.autodfit(itf,f,fs,params); | |
216 | |
217 % all pass filtering for poles stabilization | |
218 [ntf,np] = utils.math.pfallpz(res,poles,dterm,mresp,f,fs,false); | |
219 | |
220 % Fitting params | |
221 params = struct('spolesopt',0,'extpoles', np,... | |
222 'Nmaxiter',Nmaxiter,'minorder',minorder,'maxorder',maxorder,... | |
223 'weightparam',weightparam,'plot',checking,... | |
224 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... | |
225 'stabfit',1,... | |
226 'dterm',idt,'spy',spy,'fullauto',autosearch,... | |
227 'extweights',extweights); | |
228 | |
229 utils.helper.msg(utils.const.msg.PROC1, ' Fitting TF with stable model ') | |
230 [res,poles,dterm,mresp,rdl,msef] = utils.math.autodfit(ntf,f,fs,params); | |
231 | |
232 % Output data switching between output type | |
233 utils.helper.msg(utils.const.msg.PROC1, ' Output z-domain model ') | |
234 | |
235 ostruct = struct(); | |
236 | |
237 ostruct.res = res; | |
238 ostruct.poles = poles; | |
239 ostruct.dterm = dterm; | |
240 ostruct.mresp = mresp; | |
241 ostruct.rdl = rdl; | |
242 ostruct.mse = msei; | |
243 | |
244 case 'ndim' | |
245 % switching between continuous and discrete type identification | |
246 | |
247 % utils.helper.msg(utils.const.msg.PROC1, ' Performing z-domain identification on 2dim system, z-domain output ') | |
248 tf = utils.math.ndeigcsd(csd,'OTP','TF','MTD','KAY'); % input data | |
249 | |
250 [nn,mm,kk] = size(tf); | |
251 | |
252 % % Shifting to columns | |
253 % [a,b] = size(tf11); | |
254 % if a<b | |
255 % tf11 = tf11.'; | |
256 % end | |
257 % [a,b] = size(tf12); | |
258 % if a<b | |
259 % tf12 = tf12.'; | |
260 % end | |
261 % [a,b] = size(tf21); | |
262 % if a<b | |
263 % tf21 = tf21.'; | |
264 % end | |
265 % [a,b] = size(tf22); | |
266 % if a<b | |
267 % tf22 = tf22.'; | |
268 % end | |
269 % | |
270 % % Collecting tfs | |
271 % f1 = [tf11 tf21]; | |
272 % f2 = [tf12 tf22]; | |
273 | |
274 %%% System identification | |
275 | |
276 % init output | |
277 ostruct = struct(); | |
278 | |
279 for dd = 1:mm | |
280 fun = squeeze(tf(1,dd,:)); | |
281 % willing to work with columns | |
282 [a,b] = size(fun); | |
283 if a<b | |
284 fun = fun.'; | |
285 end | |
286 for ff = 2:nn | |
287 tfun = squeeze(tf(ff,dd,:)); | |
288 % willing to work with columns | |
289 [a,b] = size(tfun); | |
290 if a<b | |
291 tfun = tfun.'; | |
292 end | |
293 fun = [fun tfun]; | |
294 end | |
295 | |
296 % Fitting with unstable poles %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
297 params = struct('spolesopt',spolesopt, 'Nmaxiter',Nmaxiter, 'minorder',minorder,... | |
298 'maxorder',maxorder, 'weightparam',weightparam, 'plot',checking,... | |
299 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... | |
300 'stabfit',0,'dterm',idt,'spy',spy,'fullauto',autosearch,'extweights',extweights); | |
301 | |
302 % Fitting | |
303 utils.helper.msg(utils.const.msg.PROC1, ' Fitting with unstable common poles ') | |
304 [res,poles,dterm,mresp,rdl,msei] = utils.math.autodfit(fun,f,fs,params); | |
305 | |
306 % Poles stabilization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
307 utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering') | |
308 [nfun,np] = utils.math.pfallpz(res,poles,dterm,mresp,f,fs,false); | |
309 np = np(:,1); | |
310 | |
311 % Fitting with stable poles %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
312 | |
313 % Fitting params | |
314 params = struct('spolesopt',0,'Nmaxiter',Nmaxiter,... | |
315 'minorder',minorder,'maxorder',maxorder,... | |
316 'weightparam',weightparam,'plot',checking,... | |
317 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... | |
318 'stabfit',1,... | |
319 'dterm',idt,'spy',spy,'fullauto',autosearch,... | |
320 'extweights',extweights,'extpoles', np); | |
321 | |
322 % Fitting | |
323 utils.helper.msg(utils.const.msg.PROC1, ' Fitting with stable common poles ') | |
324 [res,poles,dterm,mresp,rdl,msef] = utils.math.autodfit(nfun,f,fs,params); | |
325 | |
326 | |
327 % Output stable model %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
328 | |
329 ostruct(dd).res = res; | |
330 ostruct(dd).poles = poles; | |
331 ostruct(dd).dterm = dterm; | |
332 ostruct(dd).mresp = mresp; | |
333 ostruct(dd).rdl = rdl; | |
334 ostruct(dd).mse = msei; | |
335 | |
336 end | |
337 | |
338 end | |
339 end | |
340 | |
341 % END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |