Mercurial > hg > ltpda
comparison m-toolbox/classes/+utils/@math/pfallpsymz.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f0afece42f48 |
---|---|
1 % PFALLPSYMZ all pass filtering in order to stabilize TF poles and zeros. | |
2 % | |
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
4 % DESCRIPTION: | |
5 % | |
6 % All pass filtering in order to stabilize transfer functions poles. | |
7 % It inputs a partial fraction expanded discrete model and outpu | |
8 % residues, poles direct terms and frequency response of the stabilized | |
9 % model. Function can handle multiple models with common poles. | |
10 % | |
11 % CALL: | |
12 % | |
13 % [nr,np,nd,resp] = pfallpsymz(r,p,d,f,fs) | |
14 % | |
15 % INPUTS: | |
16 % | |
17 % r: are residues. (Npx1) or (NpxM) vector | |
18 % p: are poles. (Npx1) vector | |
19 % d: is direct term (1x1) or (1xM) vector | |
20 % mresp: input model response. (Nx1) or (NxM) vector | |
21 % f: is the frequancies vector in (Hz). (Nx1) vector | |
22 % fs: is the sampling frequency in (Hz). (1x1) | |
23 % | |
24 % OUTPUTS: | |
25 % | |
26 % nr: new residues. (Npx1) or (NpxM) vector | |
27 % np: new stable poles. (Npx1) vector | |
28 % nd: new direct term. (1x1) or (1xM) vector | |
29 % nmresp: new model response. (Nx1) or (NxM) vector | |
30 % | |
31 % NOTE: | |
32 % | |
33 % This function make use of symbolic math toolbox functions | |
34 % | |
35 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
36 % VERSION: $Id: pfallpsymz.m,v 1.5 2008/11/10 15:40:11 luigi Exp $ | |
37 % | |
38 % HISTORY: 12-09-2008 L Ferraioli | |
39 % Creation | |
40 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
41 function [nr,np,nd,nmresp] = pfallpsymz(r,p,d,mresp,f,fs) | |
42 | |
43 % Reshaping | |
44 [a,b] = size(r); | |
45 if a<b | |
46 r = r.'; % reshape as a column vector | |
47 end | |
48 | |
49 [a,b] = size(p); | |
50 if a<b | |
51 p = p.'; % reshape as a column vector | |
52 end | |
53 | |
54 [a,b] = size(f); | |
55 if a<b | |
56 f = f.'; % reshape as a column vector | |
57 end | |
58 | |
59 [a,b] = size(f); | |
60 if a<b | |
61 f = f.'; % reshape as a column vector | |
62 end | |
63 | |
64 [a,b] = size(d); | |
65 if a > b | |
66 d = d.'; % reshape as a row | |
67 d = d(1,:); % taking the first row (the function can handle only simple constant direct terms) | |
68 end | |
69 | |
70 if isempty(fs) | |
71 fs = 1; | |
72 end | |
73 [a,b] = size(fs); | |
74 if a ~= b | |
75 disp(' Fs has to be a number. Only first term will be considered! ') | |
76 fs = fs(1); | |
77 end | |
78 | |
79 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
80 f = sym(f,'f'); | |
81 fs = sym(fs,'f'); | |
82 syms z | |
83 p = sym(p,'f'); | |
84 | |
85 % stabilize poles | |
86 sp = p; | |
87 unst = abs(double(sp)) > 1; | |
88 sp(unst) = 1./conj(sp(unst)); | |
89 skp = prod(1./conj(p(unst))); | |
90 | |
91 [Na,Nb] = size(r); | |
92 | |
93 for nn = 1:Nb | |
94 | |
95 % pp = p(unst); | |
96 % psp = sp(unst); | |
97 % tterm = 1; | |
98 % for ii = 1:length(pp) | |
99 % tterm = tterm.*(z-pp(ii))./(z-psp(ii)); | |
100 % end | |
101 % | |
102 % s = cos((2*pi/fs).*f) + 1i.*sin((2*pi/fs).*f); | |
103 % allresp = subs(tterm,z,s); | |
104 % phs = angle(allresp); | |
105 % nmresp(:,nn) = mresp(:,nn).*(cos(phs)+1i.*sin(phs)); | |
106 % np = double(sp); | |
107 | |
108 % digits(100) | |
109 % Defining inputs as symbolic variable | |
110 rt = sym(r(:,nn),'f'); | |
111 % p = sym(p,'f'); | |
112 dt = sym(d(1,nn),'f'); | |
113 % f = sym(f,'f'); | |
114 % fs = sym(fs,'f'); | |
115 % syms z | |
116 | |
117 % Function gain coefficient | |
118 k = sum(rt)+dt; | |
119 | |
120 Np = length(p); | |
121 | |
122 % Defining the symbolic transfer function | |
123 vter = rt.*z./(z-p); | |
124 vter = [vter; dt]; | |
125 Mter = diag(vter); | |
126 H = trace(Mter); | |
127 | |
128 % Factorizing the transfer function | |
129 HH = factor(H); | |
130 | |
131 % Extracting numerator and denominator | |
132 [N,D] = numden(HH); | |
133 | |
134 % Symbolci calculation of function zeros | |
135 cN = coeffs(expand(N),z); | |
136 n = length(cN); | |
137 cN2 = -1.*cN(2:end)./cN(1); | |
138 A = sym(diag(ones(1,n-2),-1)); | |
139 A(1,:) = cN2; | |
140 zrs = eig(A); | |
141 if double(d) == 0 | |
142 zrs = [zrs; sym(0,'f')]; | |
143 end | |
144 | |
145 % % stabilize zeros | |
146 % szrs = zrs; | |
147 % unst = abs(double(szrs)) > 1; | |
148 % szrs(unst) = 1./conj(szrs(unst)); | |
149 % skz = prod(conj(zrs(unst))); | |
150 | |
151 % % stabilize poles | |
152 % sp = p; | |
153 % unst = abs(double(sp)) > 1; | |
154 % sp(unst) = 1./conj(sp(unst)); | |
155 % skp = prod(1./conj(p(unst))); | |
156 | |
157 % Correcting for some special cases | |
158 % if isempty(skz) | |
159 % skz = sym(1,'f'); | |
160 % end | |
161 if isempty(skp) | |
162 skp = sym(1,'f'); | |
163 end | |
164 if isempty(k) | |
165 k = sym(1,'f'); | |
166 end | |
167 | |
168 % Calculating new gain | |
169 % sk = real(k*skz*skp); | |
170 sk = real(k*skp); | |
171 | |
172 HHHn = sym(1,'f'); | |
173 | |
174 for jj = 1:Np | |
175 HHHn = HHHn.*(z-zrs(jj)); | |
176 tsp = sp; | |
177 tsp(jj) = []; | |
178 tHHHd = sym(1,'f'); | |
179 for kk = 1:Np-1 | |
180 tHHHd = tHHHd.*(z-tsp(kk)); | |
181 end | |
182 HHHd(jj,1) = tHHHd; | |
183 | |
184 end | |
185 | |
186 for jj = 1:Np | |
187 sr(jj,1) = subs(sk*HHHn/(z*HHHd(jj,1)),z,sp(jj)); | |
188 end | |
189 | |
190 np = double(sp); | |
191 for kk = 1:Np | |
192 if imag(np(kk)) == 0 | |
193 sr(kk) = real(sr(kk)); | |
194 end | |
195 end | |
196 | |
197 nr(:,nn) = double(sr); | |
198 nd(:,nn) = double(dt); | |
199 | |
200 % Model evaluation | |
201 pfparams.type = 'disc'; | |
202 pfparams.freq = f; | |
203 pfparams.fs = fs; | |
204 pfparams.res = nr(:,nn); | |
205 pfparams.pol = np; | |
206 pfparams.dterm = nd(:,nn); | |
207 pfr = utils.math.pfresp(pfparams); | |
208 resp = pfr.resp; | |
209 | |
210 ratio = mean(abs(mresp(:,nn))./abs(resp)); | |
211 resp = resp.*ratio; | |
212 nr(:,nn) = nr(:,nn).*ratio; | |
213 nd(:,nn) = nd(:,nn).*ratio; | |
214 nmresp(:,nn) = resp; | |
215 | |
216 end |