Mercurial > hg > ltpda
comparison m-toolbox/classes/+utils/@math/psd2tf.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f0afece42f48 |
---|---|
1 % PSD2TF Input power spectral density (psd) and output a stable and minimum | |
2 % phase transfer function. | |
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
4 % | |
5 % DESCRIPTION: | |
6 % | |
7 % Input power spectral density (psd) and output a corresponding | |
8 % stable function. Identification can be performed for a simple system | |
9 % (one psd) or for a two dimensional system (the four elements of the | |
10 % cross-spectral matrix). Continuous or discrete transfer functions are | |
11 % output in partial fraction expansion: | |
12 % | |
13 % Continuous case: | |
14 % r1 rN | |
15 % f(s) = ------- + ... + ------- + d | |
16 % s - p1 s - pN | |
17 % | |
18 % Discrete case: | |
19 % r1 rN | |
20 % f(z) = ----------- + ... + ----------- + d | |
21 % 1-p1*z^{-1} 1-pN*z^{-1} | |
22 % | |
23 % System identification is performed in frequency domain, the order of | |
24 % the model function is automatically chosen by the algorithm on the | |
25 % base of the input tolerance condition. | |
26 % In the case of simple systems the square root of the psd is fitted | |
27 % and then the model is stabilized by the application of an all-pass | |
28 % function. | |
29 % In the case of two dimensional systems, transfer functions frequency | |
30 % response is calculated by the eigendecomposition of the | |
31 % cross-spectral matrix. Then four models are identified with fitting | |
32 % in frequency domain. If we call these new functions as tf11, tf12, | |
33 % tf21 and tf22, it can be verified they are connected with the input | |
34 % spectra by the relation: | |
35 % | |
36 % csd11(f) = tf11(f)*conj(tf11(f))+tf12(f)*conj(tf12(f)) | |
37 % csd12(f) = tf11(f)*conj(tf21(f))+tf12(f)*conj(tf22(f)) | |
38 % csd21(f) = conj(tf11(f))*tf21(f)+conj(tf12(f))*tf22(f) | |
39 % csd22(f) = tf21(f)*conj(tf21(f))+tf22(f)*conj(tf22(f)) | |
40 % | |
41 % CALL: | |
42 % | |
43 % One dimensional system: | |
44 % [res, poles, dterm] = psd2tf(psd,[],[],[],f,params) | |
45 % [res, poles, dterm, mresp] = psd2tf(psd,[],[],[],f,params) | |
46 % [res, poles, dterm, mresp, rdl] = psd2tf(psd,[],[],[],f,params) | |
47 % | |
48 % Two dimensional systems: | |
49 % ostruct = psd2tf(csd11,csd12,csd21,csd22,f,params) | |
50 % ostruct = psd2tf(csd11,csd12,[],csd22,f,params) | |
51 % ostruct = psd2tf(csd11,[],csd21,csd22,f,params) | |
52 % | |
53 % INPUT: | |
54 % | |
55 % - psd is the power spectral density (1dim case) | |
56 % - csd11, csd12, csd21 and csd22 are the elements of the cross | |
57 % spectral matrix. If csd12 is left empty, it is calculated as | |
58 % conj(csd21). If csd21 is left empty, it is calculated as conj(csd12). | |
59 % (2dim case) | |
60 % - f: is the corresponding frequencies vector in Hz | |
61 % - params: is a struct of identification options, the possible values | |
62 % are: | |
63 % - params.idtp = 0 s-domain identification --> s-domain output | |
64 % - params.idtp = 1 z-domain identification --> z-domain output | |
65 % | |
66 % params.fullauto = 0 --> Perform a fitting loop as far as the number | |
67 % of iteration reach Nmaxiter. The order of the fitting function will | |
68 % be that specified in params.minorder. If params.dterm is setted to | |
69 % 1 the function will fit only with direct term. | |
70 % params.fullauto = 1 --> Parform a full automatic search for the | |
71 % transfer function order. The fitting procedure will stop when the | |
72 % stopping condition defined in params.ctp is satisfied. Default | |
73 % value. | |
74 % | |
75 % - params.Nmaxiter = # set the maximum number of fitting steps | |
76 % performed for each trial function order. Default is 50 | |
77 % | |
78 % - params.minorder = # set the minimum possible function order. | |
79 % Default is 2 | |
80 % | |
81 % - params.maxorder = # set the maximum possible function order. | |
82 % Default is 25 | |
83 % | |
84 % z-domain | |
85 % params.spolesopt = 1 --> use real starting poles | |
86 % params.spolesopt = 2 --> generates complex conjugates poles of the | |
87 % type \alfa e^{j\pi\theta} with \theta = linspace(0,pi,N/2+1). | |
88 % params.spolesopt = 3 --> generates complex conjugates poles of the | |
89 % type \alfa e^{j\pi\theta} with \theta = linspace(0,pi,N/2+2). | |
90 % Default option. | |
91 % | |
92 % s-domain | |
93 % params.spolesopt = 1 --> use real starting poles | |
94 % params.spolesopt = 2 --> use logspaced complex starting poles. | |
95 % Default option | |
96 % params.spolesopt = 3 --> use linspaced complex starting poles | |
97 % | |
98 % - params.weightparam = 0 --> use external weights | |
99 % - params.weightparam = 1 equal weights (one) for each point | |
100 % - params.weightparam = 2 weight with the inverse of absolute value | |
101 % of fitting data | |
102 % - params.weightparam = 3 weight with square root of the inverse of | |
103 % absolute value of fitting data | |
104 % - params.weightparam = 4 weight with the inverse of the square mean | |
105 % spread | |
106 % | |
107 % params.extweights = [] --> A vector of externally provided weights. | |
108 % It has to be of the same size of input data. E.g. | |
109 % w11,w12,w21,w22 they are assumed to be in spectral units therefore | |
110 % they are normalized to the values of the input spectrum | |
111 % | |
112 % - params.plot = 0 --> no plot during fit iteration | |
113 % - params.plot = 1 --> plot results at each fitting steps. default | |
114 % value. | |
115 % | |
116 % - params.ctp = 'chival' --> check if the value of the Mean Squared | |
117 % Error is lower than 10^(-1*lsrcond). | |
118 % - params.ctp = 'chivar' --> check if the value of the Mean Squared | |
119 % Error is lower than 10^(-1*lsrcond) and if the relative variation of mean | |
120 % squared error is lower than 10^(-1*msevar). | |
121 % - params.ctp = 'lrs' --> check if the log difference between data and | |
122 % residuals is point by point larger than the value indicated in | |
123 % lsrcond. This mean that residuals are lsrcond order of magnitudes | |
124 % lower than data. | |
125 % - params.ctp = 'lrsmse' --> check if the log difference between data | |
126 % and residuals is larger than the value indicated in lsrcond and if | |
127 % the relative variation of mean squared error is lower than | |
128 % 10^(-1*msevar). | |
129 % | |
130 % - params.lrscond = # --> set conditioning value for point to point | |
131 % log residuals difference (params.ctp = 'lsr') and mean log residual | |
132 % difference (params.ctp = 'mlsrvar'). Default is 2. See help for | |
133 % stopfit.m for further remarks. | |
134 % | |
135 % - params.msevar = # --> set conditioning value for root mean squared | |
136 % error variation. This allow to check that the relative variation of | |
137 % mean squared error is lower than 10^(-1*msevar).Default is 7. See | |
138 % help for stopfit.m for further remarks. | |
139 % | |
140 % - params.fs set the sampling frequency (Hz) useful for z-domain | |
141 % identification. Default is 1 Hz | |
142 % | |
143 % - params.usesym = 0 perform double-precision calculation in the | |
144 % eigendecomposition procedure to identify 2dim systems and for poles | |
145 % stabilization | |
146 % - params.usesym = 1 uses symbolic math toolbox variable precision | |
147 % arithmetic in the eigendecomposition for 2dim system identification | |
148 % double-precison for poles stabilization | |
149 % - params.usesym = 2 uses symbolic math toolbox variable precision | |
150 % arithmetic in the eigendecomposition for 2dim system identification | |
151 % and for poles stabilization | |
152 % | |
153 % - params.dig = # set the digit precision required for variable | |
154 % precision arithmetic calculations. Default is 50 | |
155 % | |
156 % params.dterm = 0 --> Try to fit without direct term | |
157 % params.dterm = 1 --> Try to fit with and without direct term | |
158 % | |
159 % params.spy = 0 --> Do not display the iteration progression | |
160 % params.spy = 1 --> Display the iteration progression | |
161 % | |
162 % | |
163 % OUTPUT: | |
164 % | |
165 % One Dimensional System | |
166 % - res is the vector of residues. | |
167 % - poles is the vector of poles. | |
168 % - dterm is the direct term (if present). | |
169 % - mresp is the model frequency response. | |
170 % - rdl is the vector of residuals calculated as y - mresp. | |
171 % | |
172 % Two Dimensional System | |
173 % - ostruct is a structure array with five fields and four elements. | |
174 % Element 1 correspond to tf11 data, element 2 to tf12 data, element 3 | |
175 % to tf21 data and elemnt 4 to tf22 data. | |
176 % - ostruct(n).res --> is the vector of residues. | |
177 % - ostruct(n).poles --> is the vector of poles. | |
178 % - ostruct(n).dterm --> are the tfs direct terms. | |
179 % - ostruct(n).mresp --> are the tfs models freq. responses. | |
180 % - ostruct(n).rdl --> are the residuals vectors. | |
181 % | |
182 % | |
183 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
184 % | |
185 % VERSION: $Id: psd2tf.m,v 1.19 2010/05/03 18:07:02 luigi Exp $ | |
186 % | |
187 % HISTORY: 02-10-2008 L Ferraioli | |
188 % Creation | |
189 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
190 function varargout = psd2tf(csd11,csd12,csd21,csd22,f,params) | |
191 | |
192 utils.helper.msg(utils.const.msg.MNAME, 'running %s/%s', mfilename('class'), mfilename); | |
193 | |
194 % Collect inputs | |
195 | |
196 % Default input struct | |
197 defaultparams = struct('idtp',1, 'Nmaxiter',50, 'minorder',2,... | |
198 'maxorder',25, 'spolesopt',2, 'weightparam',1, 'plot',0,... | |
199 'ctp','chival','lrscond',2,'msevar',2,... | |
200 'fs',1, 'usesym',0, 'dig',50, 'dterm',0, 'spy',0, 'fullauto',1,... | |
201 'extweights', []); | |
202 | |
203 names = {'idtp','Nmaxiter','minorder','maxorder','spolesopt',... | |
204 'weightparam','plot','stopfitcond',... | |
205 'ctp','lrscond','msevar',... | |
206 'fs','usesym','dig','dterm','spy','fullauto','extweights'}; | |
207 | |
208 % collecting input and default params | |
209 if ~isempty(params) | |
210 for jj=1:length(names) | |
211 if isfield(params, names(jj)) && ~isempty(params.(names{1,jj})) | |
212 defaultparams.(names{1,jj}) = params.(names{1,jj}); | |
213 end | |
214 end | |
215 end | |
216 | |
217 % default values for input variables | |
218 idtp = defaultparams.idtp; % identification type | |
219 Nmaxiter = defaultparams.Nmaxiter; % Number of max iteration in the fitting loop | |
220 minorder = defaultparams.minorder; % Minimum model order | |
221 maxorder = defaultparams.maxorder; % Maximum model order | |
222 spolesopt = defaultparams.spolesopt; % 0, Fit with no complex starting poles (complex poles can be found as fit output). 1 fit with comples starting poles | |
223 weightparam = defaultparams.weightparam; % Weight 1./abs(y). Admitted values are 0, 1, 2, 3 | |
224 checking = defaultparams.plot; % Never polt. Admitted values are 0 (No polt ever), 1 (plot at the end), 2 (plot at each step) | |
225 ctp = defaultparams.ctp; | |
226 lrscond = defaultparams.lrscond; | |
227 msevar = defaultparams.msevar; | |
228 fs = defaultparams.fs; % sampling frequency | |
229 usesym = defaultparams.usesym; % method of calculation for the 2dim tfs calculation from psd | |
230 dig = defaultparams.dig; % number of digits if VPA calculation is required | |
231 idt = defaultparams.dterm; | |
232 spy = defaultparams.spy; | |
233 autosearch = defaultparams.fullauto; | |
234 extweights = defaultparams.extweights; | |
235 | |
236 % rescaling input models to get correct results | |
237 csd11 = csd11.*(fs/2); | |
238 csd12 = csd12.*(fs/2); | |
239 csd21 = csd21.*(fs/2); | |
240 csd22 = csd22.*(fs/2); | |
241 | |
242 % Assign proper values to the control variables for symbolic calculations | |
243 switch usesym | |
244 case 0 | |
245 eigsym = 0; | |
246 allsym = 0; | |
247 case 1 | |
248 eigsym = 1; | |
249 allsym = 0; | |
250 case 2 | |
251 eigsym = 1; | |
252 allsym = 1; | |
253 end | |
254 | |
255 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
256 % Checking inputs | |
257 | |
258 [a,b] = size(csd11); | |
259 if a < b % shifting to column | |
260 csd11 = csd11.'; | |
261 end | |
262 | |
263 if isempty(csd12) | |
264 csd12 = []; | |
265 else | |
266 [a,b] = size(csd12); | |
267 if a < b % shifting to column | |
268 csd12 = csd12.'; | |
269 end | |
270 end | |
271 | |
272 if isempty(csd21) | |
273 csd21 = []; | |
274 else | |
275 [a,b] = size(csd21); | |
276 if a < b % shifting to column | |
277 csd21 = csd21.'; | |
278 end | |
279 end | |
280 | |
281 [a,b] = size(csd22); | |
282 if a < b % shifting to column | |
283 csd22 = csd22.'; | |
284 end | |
285 | |
286 [a,b] = size(f); | |
287 if a < b % shifting to column | |
288 f = f.'; | |
289 end | |
290 | |
291 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
292 % Importing package | |
293 import utils.math.* | |
294 | |
295 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
296 % switching between inputs | |
297 | |
298 clear dim | |
299 % cecking for empty csd or psd2 | |
300 if all([isempty(csd12) isempty(csd21) isempty(csd22)]) | |
301 dim = '1dim'; | |
302 utils.helper.msg(utils.const.msg.PROC1, ' Empty csd12, csd21 and csd22; Performing one dimesional identification on psd ') | |
303 else | |
304 dim ='2dim'; | |
305 utils.helper.msg(utils.const.msg.PROC1, ' Performing two dimesional identification on csd11, csd12, csd21 and csd22 ') | |
306 end | |
307 | |
308 switch dim | |
309 case '1dim' | |
310 % switching between continuous and discrete type identification | |
311 switch idtp | |
312 case 0 | |
313 utils.helper.msg(utils.const.msg.PROC1, ' Performing s-domain identification, s-domain output ') | |
314 itf = abs(sqrt(csd11)); % input data | |
315 | |
316 % in case of externally provided weights | |
317 if ~isempty(extweights) | |
318 extweights = abs(extweights.*csd11./itf); | |
319 end | |
320 | |
321 % Fitting params | |
322 params = struct('spolesopt',spolesopt, 'Nmaxiter',Nmaxiter, 'minorder',minorder,... | |
323 'maxorder',maxorder, 'weightparam',weightparam, 'plot',checking,... | |
324 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... | |
325 'stabfit',0,'dterm',idt,'spy',spy,'fullauto',autosearch,'extweights',extweights); | |
326 | |
327 % Fitting | |
328 utils.helper.msg(utils.const.msg.PROC1, ' Fitting absolute TF value with unstable model ') | |
329 [res,poles,dterm,mresp,rdl,mse] = utils.math.autocfit(itf,f,params); | |
330 | |
331 % all pass filtering for poles stabilization | |
332 if allsym | |
333 [nr,np,nd,ntf] = utils.math.pfallpsyms(res,poles,dterm,mresp,f); | |
334 else | |
335 [ntf,np] = utils.math.pfallps(res,poles,dterm,mresp,f,false); | |
336 end | |
337 | |
338 % Fitting params | |
339 params = struct('spolesopt',0,'extpoles', np,... | |
340 'Nmaxiter',Nmaxiter,'minorder',minorder,'maxorder',maxorder,... | |
341 'weightparam',weightparam,'plot',checking,... | |
342 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... | |
343 'stabfit',1,... | |
344 'dterm',idt,'spy',spy,'fullauto',autosearch,... | |
345 'extweights',extweights); | |
346 | |
347 % Fitting | |
348 utils.helper.msg(utils.const.msg.PROC1, ' Fitting TF with stable model ') | |
349 [res,poles,dterm,mresp,rdl,mse] = utils.math.autocfit(ntf,f,params); | |
350 | |
351 % Output data switching between output type | |
352 utils.helper.msg(utils.const.msg.PROC1, ' Output continuous model ') | |
353 if nargout == 3 | |
354 varargout{1} = res; | |
355 varargout{2} = poles; | |
356 varargout{3} = dterm; | |
357 elseif nargout == 4 | |
358 varargout{1} = res; | |
359 varargout{2} = poles; | |
360 varargout{3} = dterm; | |
361 varargout{4} = mresp; | |
362 elseif nargout == 5 | |
363 rdl = itf - abs(mresp); % residual respect to original function | |
364 | |
365 varargout{1} = res; | |
366 varargout{2} = poles; | |
367 varargout{3} = dterm; | |
368 varargout{4} = mresp; | |
369 varargout{5} = rdl; | |
370 | |
371 else | |
372 error(' Unespected number of output. Set 3, 4 or 5! ') | |
373 end | |
374 | |
375 case 1 | |
376 utils.helper.msg(utils.const.msg.PROC1, ' Performing z-domain identification ') | |
377 itf = abs(sqrt(csd11)); % input data | |
378 | |
379 % in case of externally provided weights | |
380 if ~isempty(extweights) | |
381 extweights = abs(extweights.*csd11./itf); | |
382 end | |
383 | |
384 % Fitting params | |
385 params = struct('spolesopt',spolesopt, 'Nmaxiter',Nmaxiter, 'minorder',minorder,... | |
386 'maxorder',maxorder, 'weightparam',weightparam, 'plot',checking,... | |
387 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... | |
388 'stabfit',0,'dterm',idt,'spy',spy,'fullauto',autosearch,'extweights',extweights); | |
389 | |
390 % Fitting | |
391 utils.helper.msg(utils.const.msg.PROC1, ' Fitting absolute TF value with unstable model ') | |
392 [res,poles,dterm,mresp,rdl,mse] = utils.math.autodfit(itf,f,fs,params); | |
393 | |
394 % all pass filtering for poles stabilization | |
395 if allsym | |
396 [nr,np,nd,ntf] = utils.math.pfallpsymz(res,poles,dterm,mresp,f,fs); | |
397 else | |
398 [ntf,np] = utils.math.pfallpz(res,poles,dterm,mresp,f,fs,false); | |
399 end | |
400 | |
401 % Fitting params | |
402 params = struct('spolesopt',0,'extpoles', np,... | |
403 'Nmaxiter',Nmaxiter,'minorder',minorder,'maxorder',maxorder,... | |
404 'weightparam',weightparam,'plot',checking,... | |
405 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... | |
406 'stabfit',1,... | |
407 'dterm',idt,'spy',spy,'fullauto',autosearch,... | |
408 'extweights',extweights); | |
409 | |
410 utils.helper.msg(utils.const.msg.PROC1, ' Fitting TF with stable model ') | |
411 [res,poles,dterm,mresp,rdl,mse] = utils.math.autodfit(ntf,f,fs,params); | |
412 | |
413 % Output data switching between output type | |
414 utils.helper.msg(utils.const.msg.PROC1, ' Output z-domain model ') | |
415 if nargout == 3 | |
416 varargout{1} = res; | |
417 varargout{2} = poles; | |
418 varargout{3} = dterm; | |
419 elseif nargout == 4 | |
420 varargout{1} = res; | |
421 varargout{2} = poles; | |
422 varargout{3} = dterm; | |
423 varargout{4} = mresp; | |
424 elseif nargout == 5 | |
425 | |
426 rdl = itf - abs(mresp); % residual respect to original function | |
427 | |
428 varargout{1} = res; | |
429 varargout{2} = poles; | |
430 varargout{3} = dterm; | |
431 varargout{4} = mresp; | |
432 varargout{5} = rdl; | |
433 | |
434 else | |
435 error(' Unespected number of output. Set 3, 4 or 5! ') | |
436 end | |
437 | |
438 end | |
439 | |
440 case '2dim' | |
441 % switching between continuous and discrete type identification | |
442 switch idtp | |
443 case 0 | |
444 utils.helper.msg(utils.const.msg.PROC1, ' Performing s-domain identification on 2dim system, s-domain output ') | |
445 [tf11,tf12,tf21,tf22] = utils.math.eigcsd(csd11,csd12,csd21,csd22,'USESYM',eigsym,'DIG',dig,'OTP','TF'); % input data | |
446 | |
447 % Shifting to columns | |
448 [a,b] = size(tf11); | |
449 if a<b | |
450 tf11 = tf11.'; | |
451 end | |
452 [a,b] = size(tf12); | |
453 if a<b | |
454 tf12 = tf12.'; | |
455 end | |
456 [a,b] = size(tf21); | |
457 if a<b | |
458 tf21 = tf21.'; | |
459 end | |
460 [a,b] = size(tf22); | |
461 if a<b | |
462 tf22 = tf22.'; | |
463 end | |
464 | |
465 % Collecting tfs | |
466 f1 = [tf11 tf21]; | |
467 f2 = [tf12 tf22]; | |
468 | |
469 % get external weights | |
470 if ~isempty(extweights) | |
471 % willing to work with columns | |
472 [a,b] = size(extweights); | |
473 if a<b | |
474 extweights = extweights.'; | |
475 end | |
476 wobj1 = [extweights(:,1).*abs(csd11./tf11) extweights(:,3).*abs(csd21./tf21)]; | |
477 wobj2 = [extweights(:,2).*abs(csd12./tf12) extweights(:,4).*abs(csd22./tf22)]; | |
478 else | |
479 wobj1 = []; | |
480 wobj2 = []; | |
481 end | |
482 | |
483 % Fitting with unstable poles %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
484 | |
485 % Fitting params | |
486 params = struct('spolesopt',spolesopt, 'Nmaxiter',Nmaxiter, 'minorder',minorder,... | |
487 'maxorder',maxorder, 'weightparam',weightparam, 'plot',checking,... | |
488 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... | |
489 'stabfit',0,'dterm',idt,'spy',spy,'fullauto',autosearch,'extweights',wobj1); | |
490 | |
491 % Fitting | |
492 utils.helper.msg(utils.const.msg.PROC1, ' Fitting TF11 and TF21 with unstable common poles ') | |
493 [res1,poles1,dterm1,mresp1,rdl1,mse1] = utils.math.autocfit(f1,f,params); | |
494 | |
495 params = struct('spolesopt',spolesopt, 'Nmaxiter',Nmaxiter, 'minorder',minorder,... | |
496 'maxorder',maxorder, 'weightparam',weightparam, 'plot',checking,... | |
497 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... | |
498 'stabfit',0,'dterm',idt,'spy',spy,'fullauto',autosearch,'extweights',wobj2); | |
499 | |
500 utils.helper.msg(utils.const.msg.PROC1, ' Fitting TF12 and TF22 with unstable common poles ') | |
501 [res2,poles2,dterm2,mresp2,rdl2,mse2] = utils.math.autocfit(f2,f,params); | |
502 | |
503 % Poles stabilization | |
504 if allsym | |
505 utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering of TF11 and TF21, symbolic calc... ') | |
506 [nr1,np1,nd1,nf1] = utils.math.pfallpsyms(res1,poles1,dterm1,mresp1,f); | |
507 np1 = np1(:,1); | |
508 utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering of TF12 and TF22, symbolic calc... ') | |
509 [nr2,np2,nd2,nf2] = utils.math.pfallpsyms(res2,poles2,dterm2,mresp2,f); | |
510 np2 = np2(:,1); | |
511 else | |
512 utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering of TF11 and TF21 ') | |
513 [nf1,np1] = utils.math.pfallps(res1,poles1,dterm1,mresp1,f,false); | |
514 np1 = np1(:,1); | |
515 utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering of TF12 and TF22 ') | |
516 [nf2,np2] = utils.math.pfallps(res2,poles2,dterm2,mresp2,f,false); | |
517 np2 = np2(:,1); | |
518 end | |
519 | |
520 % Fitting with stable poles %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
521 | |
522 % Fitting stable TF11 and TF21 with stable poles in s-domain | |
523 % Fitting params | |
524 params = struct('spolesopt',0,'Nmaxiter',Nmaxiter,... | |
525 'minorder',minorder,'maxorder',maxorder,... | |
526 'weightparam',weightparam,'plot',checking,... | |
527 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... | |
528 'stabfit',1,... | |
529 'dterm',idt,'spy',spy,'fullauto',autosearch,... | |
530 'extweights',wobj1,'extpoles', np1); | |
531 | |
532 % Fitting | |
533 utils.helper.msg(utils.const.msg.PROC1, ' Fitting TF11 and TF21 with stable common poles ') | |
534 [res1,poles1,dterm1,mresp1,rdl1,mse1] = utils.math.autocfit(nf1,f,params); | |
535 | |
536 % Fitting stable TF12 and TF22 with stable poles in s-domain | |
537 % Fitting params | |
538 params = struct('spolesopt',0,'Nmaxiter',Nmaxiter,... | |
539 'minorder',minorder,'maxorder',maxorder,... | |
540 'weightparam',weightparam,'plot',checking,... | |
541 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... | |
542 'stabfit',1,... | |
543 'dterm',idt,'spy',spy,'fullauto',autosearch,... | |
544 'extweights',wobj2,'extpoles', np2); | |
545 | |
546 % Fitting | |
547 utils.helper.msg(utils.const.msg.PROC1, ' Fitting TF12 and TF22 with stable common poles ') | |
548 [res2,poles2,dterm2,mresp2,rdl2,mse2] = utils.math.autocfit(nf2,f,params); | |
549 | |
550 % Output stable model %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
551 ostruct = struct(); | |
552 | |
553 % Data for tf11 | |
554 ostruct(1).res = res1(:,1); | |
555 ostruct(1).poles = poles1; | |
556 ostruct(1).dterm = dterm1(:,1); | |
557 ostruct(1).mresp = mresp1(:,1); | |
558 ostruct(1).rdl = rdl1(:,1); | |
559 | |
560 % Data for tf12 | |
561 ostruct(2).res = res2(:,1); | |
562 ostruct(2).poles = poles2; | |
563 ostruct(2).dterm = dterm2(:,1); | |
564 ostruct(2).mresp = mresp2(:,1); | |
565 ostruct(2).rdl = rdl2(:,1); | |
566 | |
567 % Data for tf21 | |
568 ostruct(3).res = res1(:,2); | |
569 ostruct(3).poles = poles1; | |
570 ostruct(3).dterm = dterm1(:,2); | |
571 ostruct(3).mresp = mresp1(:,2); | |
572 ostruct(3).rdl = rdl1(:,2); | |
573 | |
574 % Data for tf22 | |
575 ostruct(4).res = res2(:,2); | |
576 ostruct(4).poles = poles2; | |
577 ostruct(4).dterm = dterm2(:,2); | |
578 ostruct(4).mresp = mresp2(:,2); | |
579 ostruct(4).rdl = rdl2(:,2); | |
580 | |
581 % Output data | |
582 utils.helper.msg(utils.const.msg.PROC1, ' Output continuous models ') | |
583 if nargout == 1 | |
584 varargout{1} = ostruct; | |
585 else | |
586 error(' Unespected number of output. Set 1! ') | |
587 end | |
588 | |
589 case 1 | |
590 utils.helper.msg(utils.const.msg.PROC1, ' Performing z-domain identification on 2dim system, z-domain output ') | |
591 [tf11,tf12,tf21,tf22] = utils.math.eigcsd(csd11,csd12,csd21,csd22,'USESYM',eigsym,'DIG',dig,'OTP','TF'); % input data | |
592 | |
593 % Shifting to columns | |
594 [a,b] = size(tf11); | |
595 if a<b | |
596 tf11 = tf11.'; | |
597 end | |
598 [a,b] = size(tf12); | |
599 if a<b | |
600 tf12 = tf12.'; | |
601 end | |
602 [a,b] = size(tf21); | |
603 if a<b | |
604 tf21 = tf21.'; | |
605 end | |
606 [a,b] = size(tf22); | |
607 if a<b | |
608 tf22 = tf22.'; | |
609 end | |
610 | |
611 % Collecting tfs | |
612 f1 = [tf11 tf21]; | |
613 f2 = [tf12 tf22]; | |
614 | |
615 % get external weights | |
616 if ~isempty(extweights) | |
617 % willing to work with columns | |
618 [a,b] = size(extweights); | |
619 if a<b | |
620 extweights = extweights.'; | |
621 end | |
622 wobj1 = [extweights(:,1).*abs(csd11./tf11) extweights(:,3).*abs(csd21./tf21)]; | |
623 wobj2 = [extweights(:,2).*abs(csd12./tf12) extweights(:,4).*abs(csd22./tf22)]; | |
624 else | |
625 wobj1 = []; | |
626 wobj2 = []; | |
627 end | |
628 | |
629 % Fitting with unstable poles %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
630 params = struct('spolesopt',spolesopt, 'Nmaxiter',Nmaxiter, 'minorder',minorder,... | |
631 'maxorder',maxorder, 'weightparam',weightparam, 'plot',checking,... | |
632 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... | |
633 'stabfit',0,'dterm',idt,'spy',spy,'fullauto',autosearch,'extweights',wobj1); | |
634 | |
635 % Fitting | |
636 utils.helper.msg(utils.const.msg.PROC1, ' Fitting TF11 and TF21 with unstable common poles ') | |
637 [res1,poles1,dterm1,mresp1,rdl1,mse1] = utils.math.autodfit(f1,f,fs,params); | |
638 | |
639 params = struct('spolesopt',spolesopt, 'Nmaxiter',Nmaxiter, 'minorder',minorder,... | |
640 'maxorder',maxorder, 'weightparam',weightparam, 'plot',checking,... | |
641 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... | |
642 'stabfit',0,'dterm',idt,'spy',spy,'fullauto',autosearch,'extweights',wobj2); | |
643 | |
644 utils.helper.msg(utils.const.msg.PROC1, ' Fitting TF12 and TF22 with unstable common poles ') | |
645 [res2,poles2,dterm2,mresp2,rdl2,mse2] = utils.math.autodfit(f2,f,fs,params); | |
646 | |
647 % Poles stabilization | |
648 if allsym | |
649 utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering of TF11 and TF21, symbolic calc... ') | |
650 [nr1,np1,nd1,nf1] = utils.math.pfallpsymz(res1,poles1,dterm1,mresp1,f,fs); | |
651 np1 = np1(:,1); | |
652 utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering of TF12 and TF22, symbolic calc... ') | |
653 [nr2,np2,nd2,nf2] = utils.math.pfallpsymz(res2,poles2,dterm2,mresp2,f,fs); | |
654 np2 = np2(:,1); | |
655 else | |
656 utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering of TF11 and TF21 ') | |
657 [nf1,np1] = utils.math.pfallpz(res1,poles1,dterm1,mresp1,f,fs,false); | |
658 np1 = np1(:,1); | |
659 utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering of TF12 and TF22 ') | |
660 [nf2,np2] = utils.math.pfallpz(res2,poles2,dterm2,mresp2,f,fs,false); | |
661 np2 = np2(:,1); | |
662 end | |
663 | |
664 % Fitting with stable poles %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
665 | |
666 % Fitting stable TF11 and TF21 with stable poles in z-domain | |
667 % Fitting params | |
668 params = struct('spolesopt',0,'Nmaxiter',Nmaxiter,... | |
669 'minorder',minorder,'maxorder',maxorder,... | |
670 'weightparam',weightparam,'plot',checking,... | |
671 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... | |
672 'stabfit',1,... | |
673 'dterm',idt,'spy',spy,'fullauto',autosearch,... | |
674 'extweights',wobj1,'extpoles', np1); | |
675 | |
676 % Fitting | |
677 utils.helper.msg(utils.const.msg.PROC1, ' Fitting TF11 and TF21 with stable common poles ') | |
678 [res1,poles1,dterm1,mresp1,rdl1,mse1] = utils.math.autodfit(nf1,f,fs,params); | |
679 | |
680 % Fitting stable TF12 and TF22 with stable poles in z-domain | |
681 % Fitting params | |
682 params = struct('spolesopt',0,'Nmaxiter',Nmaxiter,... | |
683 'minorder',minorder,'maxorder',maxorder,... | |
684 'weightparam',weightparam,'plot',checking,... | |
685 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... | |
686 'stabfit',1,... | |
687 'dterm',idt,'spy',spy,'fullauto',autosearch,... | |
688 'extweights',wobj2,'extpoles', np2); | |
689 | |
690 % Fitting | |
691 utils.helper.msg(utils.const.msg.PROC1, ' Fitting TF12 and TF22 with stable common poles ') | |
692 [res2,poles2,dterm2,mresp2,rdl2,mse2] = utils.math.autodfit(nf2,f,fs,params); | |
693 | |
694 % Output stable model %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
695 ostruct = struct(); | |
696 | |
697 % Data for tf11 | |
698 ostruct(1).res = res1(:,1); | |
699 ostruct(1).poles = poles1; | |
700 ostruct(1).dterm = dterm1(:,1); | |
701 ostruct(1).mresp = mresp1(:,1); | |
702 ostruct(1).rdl = rdl1(:,1); | |
703 | |
704 % Data for tf12 | |
705 ostruct(2).res = res2(:,1); | |
706 ostruct(2).poles = poles2; | |
707 ostruct(2).dterm = dterm2(:,1); | |
708 ostruct(2).mresp = mresp2(:,1); | |
709 ostruct(2).rdl = rdl2(:,1); | |
710 | |
711 % Data for tf21 | |
712 ostruct(3).res = res1(:,2); | |
713 ostruct(3).poles = poles1; | |
714 ostruct(3).dterm = dterm1(:,2); | |
715 ostruct(3).mresp = mresp1(:,2); | |
716 ostruct(3).rdl = rdl1(:,2); | |
717 | |
718 % Data for tf22 | |
719 ostruct(4).res = res2(:,2); | |
720 ostruct(4).poles = poles2; | |
721 ostruct(4).dterm = dterm2(:,2); | |
722 ostruct(4).mresp = mresp2(:,2); | |
723 ostruct(4).rdl = rdl2(:,2); | |
724 | |
725 % Output data | |
726 utils.helper.msg(utils.const.msg.PROC1, ' Output discrete models ') | |
727 if nargout == 1 | |
728 varargout{1} = ostruct; | |
729 else | |
730 error(' Unespected number of output. Set 1! ') | |
731 end | |
732 | |
733 end | |
734 end | |
735 | |
736 % END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |