comparison m-toolbox/classes/+utils/@math/psd2wf.m @ 0:f0afece42f48

Import.
author Daniele Nicolodi <nicolodi@science.unitn.it>
date Wed, 23 Nov 2011 19:22:13 +0100
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:f0afece42f48
1 % PSD2WF: Input power spectral density (psd) and output a corresponding
2 % whitening filter
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 %
5 % DESCRIPTION:
6 %
7 % Input power spectral density (psd) and output a corresponding
8 % whitening filter.
9 % Identification can be performed for a simple system (one psd) or for
10 % a two dimensional system (the four elements of the cross-spectral
11 % matrix). Continuous or discrete transfer functions are output in
12 % partial fraction expansion:
13 %
14 % Continuous case:
15 % r1 rN
16 % f(s) = ------- + ... + ------- + d
17 % s - p1 s - pN
18 %
19 % Discrete case:
20 % r1 rN
21 % f(z) = ----------- + ... + ----------- + d
22 % 1-p1*z^{-1} 1-pN*z^{-1}
23 %
24 % System identification is performed in frequency domain, the order of
25 % the model function is automatically chosen by the algorithm on the
26 % base of the input tolerance condition.
27 % In the case of simple systems the square root of the psd is fitted
28 % and then the model is stabilized by the application of an all-pass
29 % function. Then the inverse is fitted with unstable poles in order to
30 % output the model for the whitening filter.
31 % In the case of two dimensional systems, whitening filter functions
32 % frequency response is calculated by the eigendecomposition of the
33 % cross-spectral matrix. Then four models are identified with fitting
34 % in frequency domain. If we call these new functions as wf11, wf12,
35 % wf21 and wf22, two correlated noisy data series can be whitened by
36 % applying (in frequency notation) the matrix relation:
37 %
38 % / wd1(f) \ / wf11(f) wf12(f) \ / d1(f) \
39 % | | = | |*| |
40 % \ wd2(f) / \ wf21(f) wf22(f) / \ d2(f) /
41 %
42 % CALL:
43 %
44 % One dimensional system:
45 % [res, poles, dterm] = psd2wf(psd,[],[],[],f,params)
46 % [res, poles, dterm, mresp] = psd2wf(psd,[],[],[],f,params)
47 % [res, poles, dterm, mresp, rdl] = psd2wf(psd,[],[],[],f,params)
48 %
49 % Two dimensional systems:
50 % ostruct = psd2wf(csd11,csd12,csd21,csd22,f,params)
51 % ostruct = psd2wf(csd11,csd12,[],csd22,f,params)
52 % ostruct = psd2wf(csd11,[],csd21,csd22,f,params)
53 %
54 % INPUT:
55 %
56 % - psd is the power spectral density (1dim case)
57 % - csd11, csd12, csd21 and csd22 are the elements of the cross
58 % spectral matrix. If csd12 is left empty, it is calculated as
59 % conj(csd21). If csd21 is left empty, it is calculated as conj(csd12).
60 % (2dim case)
61 % - f: is the corresponding frequencies vector in Hz
62 % - params: is a struct of identification options, the possible values
63 % are:
64 % - params.idtp = 0 s-domain identification --> s-domain output
65 % - params.idtp = 1 z-domain identification --> z-domain output
66 %
67 % params.fullauto = 0 --> Perform a fitting loop as far as the number
68 % of iteration reach Nmaxiter. The order of the fitting function will
69 % be that specified in params.minorder. If params.dterm is setted to
70 % 1 the function will fit only with direct term.
71 % params.fullauto = 1 --> Parform a full automatic search for the
72 % transfer function order. The fitting procedure will stop when the
73 % stopping condition defined in params.ctp is satisfied. Default
74 % value.
75 %
76 % - params.Nmaxiter = # set the maximum number of fitting steps
77 % performed for each trial function order. Default is 50
78 %
79 % - params.minorder = # set the minimum possible function order.
80 % Default is 2
81 %
82 % - params.maxorder = # set the maximum possible function order.
83 % Default is 25
84 %
85 % - params.spolesopt have different behaviours for z and s domains
86 %
87 % z-domain
88 % params.spolesopt = 1 --> use real starting poles
89 % params.spolesopt = 2 --> generates complex conjugates poles of the
90 % type \alfa e^{j\pi\theta} with \theta = linspace(0,pi,N/2+1).
91 % params.spolesopt = 3 --> generates complex conjugates poles of the
92 % type \alfa e^{j\pi\theta} with \theta = linspace(0,pi,N/2+2).
93 % Default option.
94 %
95 % s-domain
96 % params.spolesopt = 1 --> use real starting poles
97 % params.spolesopt = 2 --> use logspaced complex starting poles.
98 % Default option
99 % params.spolesopt = 3 --> use linspaced complex starting poles
100 %
101 % - params.weightparam = 0 --> use external weights
102 % - params.weightparam = 1 equal weights (one) for each point
103 % - params.weightparam = 2 weight with the inverse of absolute value
104 % of fitting data
105 % - params.weightparam = 3 weight with square root of the inverse of
106 % absolute value of fitting data
107 % - params.weightparam = 4 weight with the inverse of the square mean
108 % spread
109 %
110 % params.extweights = [] --> A vector of externally provided weights.
111 % It has to be of the same size of input data.
112 %
113 % - params.plot = 0 --> no plot during fit iteration
114 % - params.plot = 1 --> plot results at each fitting steps. default
115 % value.
116 %
117 % - params.ctp = 'chival' --> check if the value of the Mean Squared
118 % Error is lower than 10^(-1*lsrcond).
119 % - params.ctp = 'chivar' --> check if the value of the Mean Squared
120 % Error is lower than 10^(-1*lsrcond) and if the relative variation of mean
121 % squared error is lower than 10^(-1*msevar).
122 % - params.ctp = 'lrs' --> check if the log difference between data and
123 % residuals is point by point larger than the value indicated in
124 % lsrcond. This mean that residuals are lsrcond order of magnitudes
125 % lower than data.
126 % - params.ctp = 'lrsmse' --> check if the log difference between data
127 % and residuals is larger than the value indicated in lsrcond and if
128 % the relative variation of mean squared error is lower than
129 % 10^(-1*msevar).
130 %
131 % - params.lrscond = # --> set conditioning value for point to point
132 % log residuals difference (params.ctp = 'lsr') and mean log residual
133 % difference (params.ctp = 'mlsrvar'). Default is 2. See help for
134 % stopfit.m for further remarks.
135 %
136 % - params.msevar = # --> set conditioning value for root mean squared
137 % error variation. This allow to check that the relative variation of
138 % mean squared error is lower than 10^(-1*msevar).Default is 7. See
139 % help for stopfit.m for further remarks.
140 %
141 % - params.fs set the sampling frequency (Hz) useful for z-domain
142 % identification. Default is 1 Hz
143 %
144 % - params.usesym = 0 perform double-precision calculation in the
145 % eigendecomposition procedure to identify 2dim systems and for poles
146 % stabilization
147 % - params.usesym = 1 uses symbolic math toolbox variable precision
148 % arithmetic in the eigendecomposition for 2dim system identification
149 % double-precison for poles stabilization
150 % - params.usesym = 2 uses symbolic math toolbox variable precision
151 % arithmetic in the eigendecomposition for 2dim system identification
152 % and for poles stabilization
153 %
154 % - params.keepvar = true --> preserve input data variance.
155 % - params.keepvar = false --> do not preserve input data variance.
156 %
157 % - params.vars = [# #] desired data variance. Necessary when
158 % keepvar is set to true.
159 %
160 % - params.dig = # set the digit precision required for variable
161 % precision arithmetic calculations. Default is 50
162 %
163 % params.dterm = 0 --> Try to fit without direct term
164 % params.dterm = 1 --> Try to fit with and without direct term
165 %
166 % params.spy = 0 --> Do not display the iteration progression
167 % params.spy = 1 --> Display the iteration progression
168 %
169 %
170 % OUTPUT:
171 %
172 % One Dimensional System
173 % - res is the vector of residues.
174 % - poles is the vector of poles.
175 % - dterm is the direct term (if present).
176 % - mresp is the model frequency response.
177 % - rdl is the vector of residuals calculated as y - mresp.
178 %
179 % Two Dimensional System
180 % - ostruct is a structure array with five fields and four elements.
181 % Element 1 correspond to wf11 data, element 2 to wf12 data, element 3
182 % to wf21 data and elemnt 4 to wf22 data.
183 % - ostruct(n).res --> is the vector of residues.
184 % - ostruct(n).poles --> is the vector of poles.
185 % - ostruct(n).dterm --> are the wfs direct terms.
186 % - ostruct(n).mresp --> are the wfs models freq. responses.
187 % - ostruct(n).rdl --> are the residuals vectors.
188 %
189 %
190 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
191 % HISTORY: 02-10-2008 L Ferraioli
192 % Creation
193 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
194 % VERSION: '$Id: psd2wf.m,v 1.30 2010/07/15 17:25:42 luigi Exp $';
195 %
196 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
197 function varargout = psd2wf(csd11,csd12,csd21,csd22,f,params)
198
199 utils.helper.msg(utils.const.msg.MNAME, 'running %s/%s', mfilename('class'), mfilename);
200
201 % Collect inputs
202
203 % Default input struct
204 defaultparams = struct('idtp',1, ...
205 'Nmaxiter',50, 'minorder',2,...
206 'maxorder',25, 'spolesopt',2, 'weightparam',1, 'plot',0,...
207 'ctp','chival','lrscond',2,'msevar',2,...
208 'fs',1, 'usesym',0, 'dig',50, 'dterm',0, 'spy',0, 'fullauto',1,...
209 'extweights', [],'keepvar',false,'vars',[1 1]);
210
211 names = {'idtp','Nmaxiter','minorder','maxorder','spolesopt',...
212 'weightparam','plot','stopfitcond',...
213 'ctp','lrscond','msevar',...
214 'fs','usesym','dig','dterm','spy','fullauto','extweights',...
215 'keepvar','vars'};
216
217 % collecting input and default params
218 if ~isempty(params)
219 for jj=1:length(names)
220 if isfield(params, names(jj)) && ~isempty(params.(names{1,jj}))
221 defaultparams.(names{1,jj}) = params.(names{1,jj});
222 end
223 end
224 end
225
226 % default values for input variables
227 idtp = defaultparams.idtp; % identification type
228 Nmaxiter = defaultparams.Nmaxiter; % Number of max iteration in the fitting loop
229 minorder = defaultparams.minorder; % Minimum model order
230 maxorder = defaultparams.maxorder; % Maximum model order
231 spolesopt = defaultparams.spolesopt; % 0, Fit with no complex starting poles (complex poles can be found as fit output). 1 fit with comples starting poles
232 weightparam = defaultparams.weightparam; % Weight 1./abs(y). Admitted values are 0, 1, 2, 3
233 checking = defaultparams.plot; % Never polt. Admitted values are 0 (No polt ever), 1 (plot at the end), 2 (plot at each step)
234 ctp = defaultparams.ctp;
235 lrscond = defaultparams.lrscond;
236 msevar = defaultparams.msevar;
237 fs = defaultparams.fs; % sampling frequency
238 usesym = defaultparams.usesym; % method of calculation for the 2dim wfs calculation from psd
239 dig = defaultparams.dig; % number of digits if VPA calculation is required
240 idt = defaultparams.dterm;
241 spy = defaultparams.spy;
242 autosearch = defaultparams.fullauto;
243 extweights = defaultparams.extweights;
244 kv = defaultparams.keepvar;
245 vars = defaultparams.vars;
246
247 % Assign proper values to the control variables for symbolic calculations
248 switch usesym
249 case 0
250 eigsym = 0;
251 allsym = 0;
252 case 1
253 eigsym = 1;
254 allsym = 0;
255 case 2
256 eigsym = 1;
257 allsym = 1;
258 end
259
260 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
261 % Checking inputs
262
263 [a,b] = size(csd11);
264 if a < b % shifting to column
265 csd11 = csd11.';
266 end
267
268 if isempty(csd12)
269 csd12 = [];
270 else
271 [a,b] = size(csd12);
272 if a < b % shifting to column
273 csd12 = csd12.';
274 end
275 end
276
277 if isempty(csd21)
278 csd21 = [];
279 else
280 [a,b] = size(csd21);
281 if a < b % shifting to column
282 csd21 = csd21.';
283 end
284 end
285
286 [a,b] = size(csd22);
287 if a < b % shifting to column
288 csd22 = csd22.';
289 end
290
291 [a,b] = size(f);
292 if a < b % shifting to column
293 f = f.';
294 end
295
296 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
297 % Rescale the models
298 csd11 = csd11 .* fs/2;
299 csd21 = csd21 .* fs/2;
300 csd12 = csd12 .* fs/2;
301 csd22 = csd22 .* fs/2;
302
303 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
304 % Importing package
305 import utils.math.*
306
307 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
308 % switching between inputs
309
310 clear dim
311 % checking for empty csd12, csd21 or csd22
312 if all([isempty(csd12) isempty(csd21) isempty(csd22)])
313 dim = '1dim';
314 utils.helper.msg(utils.const.msg.PROC1, ' Empty csd12, csd21 and csd22; Performing one dimensional identification on psd ')
315 else
316 dim ='2dim';
317 utils.helper.msg(utils.const.msg.PROC1, ' Performing two dimensional identification on csd11, csd12, csd21 and csd22 ')
318 end
319
320 switch dim
321 case '1dim'
322 % switching between continuous and discrete type identification
323 switch idtp
324 case 0
325 utils.helper.msg(utils.const.msg.PROC1, ' Performing s-domain identification ')
326 itf = abs(sqrt(csd11)); % input data
327
328 % Fitting WF with unstable poles in s-domain
329 wf = 1./itf;
330
331 % Fitting params
332 params = struct('spolesopt',spolesopt,'Nmaxiter',Nmaxiter,...
333 'minorder',minorder,'maxorder',maxorder,...
334 'weightparam',weightparam,'plot',checking,...
335 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,...
336 'stabfit',0,...
337 'dterm',idt,'spy',spy,'fullauto',autosearch,...
338 'extweights',extweights);
339
340 % Fitting
341 utils.helper.msg(utils.const.msg.PROC1, ' Fitting absolute WF value with unstable model ')
342 [res,poles,dterm,mresp,rdl,mse] = utils.math.autocfit(wf,f,params);
343
344
345 % all pass filtering for poles stabilization
346 if allsym
347 utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering for poles stabilization; symbolic...' )
348 [nr,np,nd,nwf] = utils.math.pfallpsyms(res,poles,dterm,mresp,f);
349 else
350 utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering for poles stabilization' )
351 [nwf,np] = utils.math.pfallps(res,poles,dterm,mresp,f,false);
352 end
353
354 % Fitting params
355 params = struct('spolesopt',0,'extpoles', np,...
356 'Nmaxiter',Nmaxiter,'minorder',minorder,'maxorder',maxorder,...
357 'weightparam',weightparam,'plot',checking,...
358 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,...
359 'stabfit',1,...
360 'dterm',idt,'spy',spy,'fullauto',autosearch,...
361 'extweights',extweights);
362
363 % Fitting
364 utils.helper.msg(utils.const.msg.PROC1, ' Fitting WF with stable model ')
365 [res,poles,dterm,mresp,rdl,mse] = utils.math.autocfit(nwf,f,params);
366
367
368 % Output data switching between output type
369 utils.helper.msg(utils.const.msg.PROC1, ' Output continuous model ')
370 if nargout == 3
371 varargout{1} = res;
372 varargout{2} = poles;
373 varargout{3} = dterm;
374 elseif nargout == 4
375 varargout{1} = res;
376 varargout{2} = poles;
377 varargout{3} = dterm;
378 varargout{4} = mresp;
379 elseif nargout == 5
380 rdl = abs(sqrt(csd11)) - abs(mresp); % residual respect to original function
381
382 varargout{1} = res;
383 varargout{2} = poles;
384 varargout{3} = dterm;
385 varargout{4} = mresp;
386 varargout{5} = rdl;
387
388 else
389 error(' Unespected number of output. Set 3, 4 or 5! ')
390 end
391
392 case 1
393 utils.helper.msg(utils.const.msg.PROC1, ' Performing z-domain identification ')
394 itf = abs(sqrt(csd11)); % input data
395
396 % Fitting WF with unstable poles
397 wf = 1./itf;
398
399 % Fitting params
400 params = struct('spolesopt',spolesopt, 'Nmaxiter',Nmaxiter, 'minorder',minorder,...
401 'maxorder',maxorder, 'weightparam',weightparam, 'plot',checking,...
402 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,...
403 'stabfit',0,'dterm',idt,'spy',spy,'fullauto',autosearch,'extweights',extweights);
404
405 % Fitting
406 utils.helper.msg(utils.const.msg.PROC1, ' Fitting absolute TF value with unstable model ')
407 [res,poles,dterm,mresp,rdl,mse] = utils.math.autodfit(wf,f,fs,params);
408
409
410 % all pass filtering for poles stabilization
411 if allsym
412 utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering for poles stabilization; symbolic...' )
413 [nr,np,nd,nwf] = utils.math.pfallpsymz(res,poles,dterm,mresp,f,fs);
414 else
415 utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering for poles stabilization' )
416 [nwf,np] = utils.math.pfallpz(res,poles,dterm,mresp,f,fs,false);
417 end
418
419 % Fitting params
420 params = struct('spolesopt',0,'extpoles', np,...
421 'Nmaxiter',Nmaxiter,'minorder',minorder,'maxorder',maxorder,...
422 'weightparam',weightparam,'plot',checking,...
423 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,...
424 'stabfit',1,...
425 'dterm',idt,'spy',spy,'fullauto',autosearch,...
426 'extweights',extweights);
427
428 [res,poles,dterm,mresp,rdl,mse] = utils.math.autodfit(nwf,f,fs,params);
429
430
431 % Output data switching between output type
432 utils.helper.msg(utils.const.msg.PROC1, ' Output z-domain model ')
433 if nargout == 3
434 varargout{1} = res;
435 varargout{2} = poles;
436 varargout{3} = dterm;
437 elseif nargout == 4
438 varargout{1} = res;
439 varargout{2} = poles;
440 varargout{3} = dterm;
441 varargout{4} = mresp;
442 elseif nargout == 5
443
444 rdl = abs(sqrt(csd11)) - abs(mresp); % residual respect to original function
445
446 varargout{1} = res;
447 varargout{2} = poles;
448 varargout{3} = dterm;
449 varargout{4} = mresp;
450 varargout{5} = rdl;
451
452 else
453 error(' Unespected number of output. Set 3, 4 or 5! ')
454 end
455
456 end % switch idtp
457
458 case '2dim'
459 % switching between continuous and discrete type identification
460 switch idtp
461 case 0
462 utils.helper.msg(utils.const.msg.PROC1, ' Performing s-domain identification on 2dim system, s-domain output ')
463 [wf11,wf12,wf21,wf22] = utils.math.eigcsd(csd11,csd12,csd21,csd22,'USESYM',eigsym,'DIG',dig,'OTP','WF','KEEPVAR',kv,'VARS',vars); % input data
464
465 % Shifting to columns
466 [a,b] = size(wf11);
467 if a<b
468 wf11 = wf11.';
469 end
470 [a,b] = size(wf12);
471 if a<b
472 wf12 = wf12.';
473 end
474 [a,b] = size(wf21);
475 if a<b
476 wf21 = wf21.';
477 end
478 [a,b] = size(wf22);
479 if a<b
480 wf22 = wf22.';
481 end
482
483 % Collecting wfs
484 f1 = [wf11 wf12];
485 f2 = [wf21 wf22];
486
487 % Fitting with unstable poles %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
488
489 % Fitting params
490 params = struct('spolesopt',spolesopt, 'Nmaxiter',Nmaxiter, 'minorder',minorder,...
491 'maxorder',maxorder, 'weightparam',weightparam, 'plot',checking,...
492 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,...
493 'stabfit',0,'dterm',idt,'spy',spy,'fullauto',autosearch,'extweights',extweights);
494
495 % Fitting
496 utils.helper.msg(utils.const.msg.PROC1, ' Fitting WF11 and WF21 with unstable common poles ')
497 [res1,poles1,dterm1,mresp1,rdl1,mse1] = utils.math.autocfit(f1,f,params);
498
499 utils.helper.msg(utils.const.msg.PROC1, ' Fitting WF12 and WF22 with unstable common poles ')
500 [res2,poles2,dterm2,mresp2,rdl2,emse2] = utils.math.autocfit(f2,f,params);
501
502
503 % Poles stabilization
504 if allsym
505 utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering of WF11 and WF21, symbolic calc... ')
506 [nr1,np1,nd1,nf1] = utils.math.pfallpsyms(res1,poles1,dterm1,mresp1,f);
507 np1 = np1(:,1);
508 utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering of WF12 and WF22, symbolic calc... ')
509 [nr2,np2,nd2,nf2] = utils.math.pfallpsyms(res2,poles2,dterm2,mresp2,f);
510 np2 = np2(:,1);
511 else
512 utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering of WF11 and WF21 ')
513 [nf1,np1] = utils.math.pfallps(res1,poles1,dterm1,mresp1,f,false);
514 np1 = np1(:,1);
515 utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering of WF12 and WF22 ')
516 [nf2,np2] = utils.math.pfallps(res2,poles2,dterm2,mresp2,f,false);
517 np2 = np2(:,1);
518 end
519
520 % Fitting with stable poles %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
521
522 % Fitting stable WF11 and WF21 with stable poles in s-domain
523 % Fitting params
524 params = struct('spolesopt',0,'extpoles', np1,'Nmaxiter',Nmaxiter,...
525 'minorder',minorder,'maxorder',maxorder,...
526 'weightparam',weightparam,'plot',checking,...
527 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,...
528 'stabfit',1,...
529 'dterm',idt,'spy',spy,'fullauto',autosearch,...
530 'extweights',extweights);
531
532 % Fitting
533 utils.helper.msg(utils.const.msg.PROC1, ' Fitting WF11 and WF21 with stable common poles ')
534 [res1,poles1,dterm1,mresp1,rdl1,mse1] = utils.math.autocfit(nf1,f,params);
535
536 % Fitting stable WF12 and WF22 with stable poles in s-domain
537 % Fitting params
538 params = struct('spolesopt',0,'extpoles', np2,'Nmaxiter',Nmaxiter,...
539 'minorder',minorder,'maxorder',maxorder,...
540 'weightparam',weightparam,'plot',checking,...
541 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,...
542 'stabfit',1,...
543 'dterm',idt,'spy',spy,'fullauto',autosearch,...
544 'extweights',extweights);
545
546 % Fitting
547 utils.helper.msg(utils.const.msg.PROC1, ' Fitting WF12 and WF22 with stable common poles ')
548 [res2,poles2,dterm2,mresp2,rdl2,mse2] = utils.math.autocfit(nf2,f,params);
549
550
551 % Output WF model %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
552 ostruct = struct();
553
554 % Data for wf11
555 ostruct(1).res = res1(:,1);
556 ostruct(1).poles = poles1;
557 ostruct(1).dterm = dterm1(:,1);
558 ostruct(1).mresp = mresp1(:,1);
559 ostruct(1).rdl = rdl1(:,1);
560
561 % Data for wf12
562 ostruct(2).res = res1(:,2);
563 ostruct(2).poles = poles1;
564 ostruct(2).dterm = dterm1(:,2);
565 ostruct(2).mresp = mresp1(:,2);
566 ostruct(2).rdl = rdl1(:,2);
567
568
569 % Data for wf21
570 ostruct(3).res = res2(:,1);
571 ostruct(3).poles = poles2;
572 ostruct(3).dterm = dterm2(:,1);
573 ostruct(3).mresp = mresp2(:,1);
574 ostruct(3).rdl = rdl2(:,1);
575
576 % Data for wf22
577 ostruct(4).res = res2(:,2);
578 ostruct(4).poles = poles2;
579 ostruct(4).dterm = dterm2(:,2);
580 ostruct(4).mresp = mresp2(:,2);
581 ostruct(4).rdl = rdl2(:,2);
582
583 % Output data
584 utils.helper.msg(utils.const.msg.PROC1, ' Output continuous models ')
585 if nargout == 1
586 varargout{1} = ostruct;
587 else
588 error(' Unespected number of output. Set 1! ')
589 end
590
591 case 1
592 utils.helper.msg(utils.const.msg.PROC1, ' Performing z-domain identification on 2dim system')
593 [wf11,wf12,wf21,wf22] = utils.math.eigcsd(csd11,csd12,csd21,csd22,'USESYM',eigsym,'DIG',dig,'OTP','WF','KEEPVAR',kv,'VARS',vars); % input data
594
595 % Shifting to columns
596 [a,b] = size(wf11);
597 if a<b
598 wf11 = wf11.';
599 end
600 [a,b] = size(wf12);
601 if a<b
602 wf12 = wf12.';
603 end
604 [a,b] = size(wf21);
605 if a<b
606 wf21 = wf21.';
607 end
608 [a,b] = size(wf22);
609 if a<b
610 wf22 = wf22.';
611 end
612
613 % Collecting wfs
614 f1 = [wf11 wf12];
615 f2 = [wf21 wf22];
616
617 % Fitting with unstable poles %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
618 params = struct('spolesopt',spolesopt, 'Nmaxiter',Nmaxiter, 'minorder',minorder,...
619 'maxorder',maxorder, 'weightparam',weightparam, 'plot',checking,...
620 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,...
621 'stabfit',0,'dterm',idt,'spy',spy,'fullauto',autosearch,'extweights',extweights);
622
623 % Fitting
624 utils.helper.msg(utils.const.msg.PROC1, ' Fitting WF11 and WF21 with unstable common poles ')
625 [res1,poles1,dterm1,mresp1,rdl1,mse1] = utils.math.autodfit(f1,f,fs,params);
626
627 utils.helper.msg(utils.const.msg.PROC1, ' Fitting WF12 and WF22 with unstable common poles ')
628 [res2,poles2,dterm2,mresp2,rdl2,mse2] = utils.math.autodfit(f2,f,fs,params);
629
630
631 % Poles stabilization
632 if allsym
633 utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering of WF11 and WF21, symbolic calc... ')
634 [nr1,np1,nd1,nf1] = utils.math.pfallpsymz(res1,poles1,dterm1,mresp1,f,fs);
635 np1 = np1(:,1);
636 utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering of WF12 and WF22, symbolic calc... ')
637 [nr2,np2,nd2,nf2] = utils.math.pfallpsymz(res2,poles2,dterm2,mresp2,f,fs);
638 np2 = np2(:,1);
639 else
640 utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering of WF11 and WF21 ')
641 [nf1,np1] = utils.math.pfallpz(res1,poles1,dterm1,mresp1,f,fs,false);
642 np1 = np1(:,1);
643 utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering of WF12 and WF22 ')
644 [nf2,np2] = utils.math.pfallpz(res2,poles2,dterm2,mresp2,f,fs,false);
645 np2 = np2(:,1);
646 end
647
648 % Fitting with stable poles %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
649
650 % Fitting params
651 params = struct('spolesopt',0,'extpoles', np1,'Nmaxiter',Nmaxiter,...
652 'minorder',minorder,'maxorder',maxorder,...
653 'weightparam',weightparam,'plot',checking,...
654 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,...
655 'stabfit',1,...
656 'dterm',idt,'spy',spy,'fullauto',autosearch,...
657 'extweights',extweights);
658
659 % Fitting
660 utils.helper.msg(utils.const.msg.PROC1, ' Fitting WF11 and WF21 with stable common poles ')
661 [res1,poles1,dterm1,mresp1,rdl1,mse1] = utils.math.autodfit(nf1,f,fs,params);
662
663 % Fitting stable WF12 and WF22 with stable poles in s-domain
664 % Fitting params
665 params = struct('spolesopt',0,'extpoles', np2,'Nmaxiter',Nmaxiter,...
666 'minorder',minorder,'maxorder',maxorder,...
667 'weightparam',weightparam,'plot',checking,...
668 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,...
669 'stabfit',1,...
670 'dterm',idt,'spy',spy,'fullauto',autosearch,...
671 'extweights',extweights);
672
673 % Fitting
674 utils.helper.msg(utils.const.msg.PROC1, ' Fitting WF12 and WF22 with stable common poles ')
675 [res2,poles2,dterm2,mresp2,rdl2,mse2] = utils.math.autodfit(nf2,f,fs,params);
676
677
678 % Output model %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
679 ostruct = struct();
680
681 % Data for tf11
682 ostruct(1).res = res1(:,1);
683 ostruct(1).poles = poles1;
684 ostruct(1).dterm = dterm1(:,1);
685 ostruct(1).mresp = mresp1(:,1);
686 ostruct(1).rdl = rdl1(:,1);
687
688 % Data for tf12
689 ostruct(2).res = res1(:,2);
690 ostruct(2).poles = poles1;
691 ostruct(2).dterm = dterm1(:,2);
692 ostruct(2).mresp = mresp1(:,2);
693 ostruct(2).rdl = rdl1(:,2);
694
695
696 % Data for tf21
697 ostruct(3).res = res2(:,1);
698 ostruct(3).poles = poles2;
699 ostruct(3).dterm = dterm2(:,1);
700 ostruct(3).mresp = mresp2(:,1);
701 ostruct(3).rdl = rdl2(:,1);
702
703
704 % Data for tf22
705 ostruct(4).res = res2(:,2);
706 ostruct(4).poles = poles2;
707 ostruct(4).dterm = dterm2(:,2);
708 ostruct(4).mresp = mresp2(:,2);
709 ostruct(4).rdl = rdl2(:,2);
710
711 % Output data
712 utils.helper.msg(utils.const.msg.PROC1, ' Output discrete models ')
713 if nargout == 1
714 varargout{1} = ostruct;
715 else
716 error(' Unespected number of output. Set 1! ')
717 end
718
719 end
720 end
721
722 % END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%