Mercurial > hg > ltpda
comparison m-toolbox/classes/@ao/cdfplot.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f0afece42f48 |
---|---|
1 % CDFPLOT makes cumulative distribution plot | |
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
3 % | |
4 % DESCRIPTION: Make cumulative distribution plot and calculate confidence | |
5 % intervals on the basis of the Kolmogorov-Smirnov test. | |
6 % | |
7 % CALL: cdfplot(a, pl) | |
8 % | |
9 % INPUT: a: are real valued AO | |
10 % | |
11 % | |
12 % <a href="matlab:utils.helper.displayMethodInfo('ao', 'kstest')">Parameters Description</a> | |
13 % | |
14 % VERSION: $Id: cdfplot.m,v 1.3 2011/07/08 09:45:35 luigi Exp $ | |
15 % | |
16 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
17 | |
18 function varargout = cdfplot(varargin) | |
19 | |
20 % Check if this is a call for parameters | |
21 if utils.helper.isinfocall(varargin{:}) | |
22 varargout{1} = getInfo(varargin{3}); | |
23 return | |
24 end | |
25 | |
26 import utils.const.* | |
27 utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); | |
28 | |
29 % Collect input variable names | |
30 in_names = cell(size(varargin)); | |
31 for ii = 1:nargin,in_names{ii} = inputname(ii);end | |
32 | |
33 % Collect all AOs and plists | |
34 [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); | |
35 pl = utils.helper.collect_objects(varargin(:), 'plist', in_names); | |
36 | |
37 % combine plists | |
38 if isempty(pl) | |
39 model = 'empirical'; | |
40 else | |
41 model = lower(find(pl, 'TESTDISTRIBUTION')); | |
42 if isempty(model) | |
43 model = 'empirical'; | |
44 pl.pset('TESTDISTRIBUTION', model); | |
45 end | |
46 end | |
47 | |
48 pl = parse(pl, getDefaultPlist(model)); | |
49 | |
50 % get parameters | |
51 conf = find(pl, 'CONFLEVEL'); | |
52 if isa(conf, 'ao') | |
53 conf = conf.y; | |
54 end | |
55 shapeparam = find(pl, 'SHAPEPARAM'); | |
56 if isa(shapeparam, 'ao') | |
57 shapeparam = shapeparam.y; | |
58 end | |
59 ftsize = find(pl, 'FONTSIZE'); | |
60 if isa(ftsize, 'ao') | |
61 ftsize = ftsize.y; | |
62 end | |
63 lwidth = find(pl, 'LINEWIDTH'); | |
64 if isa(lwidth, 'ao') | |
65 lwidth = lwidth.y; | |
66 end | |
67 | |
68 % switch among test type | |
69 switch lower(model) | |
70 case 'normal' | |
71 mmean = find(pl, 'MEAN'); | |
72 if isa(mmean, 'ao') | |
73 mmean = mmean.y; | |
74 end | |
75 sstd = find(pl, 'STD'); | |
76 if isa(sstd, 'ao') | |
77 sstd = sstd.y; | |
78 end | |
79 distparams = [mmean, sstd]; | |
80 dist = 'normdist'; | |
81 case 'chi2' | |
82 ddof = find(pl, 'DOF'); | |
83 if isa(ddof, 'ao') | |
84 ddof = ddof.y; | |
85 end | |
86 distparams = [ddof]; | |
87 dist = 'chi2dist'; | |
88 case 'f' | |
89 dof1 = find(pl, 'DOF1'); | |
90 if isa(dof1, 'ao') | |
91 dof1 = dof1.y; | |
92 end | |
93 dof2 = find(pl, 'DOF2'); | |
94 if isa(dof2, 'ao') | |
95 dof2 = dof2.y; | |
96 end | |
97 distparams = [dof1, dof2]; | |
98 dist = 'fdist'; | |
99 case 'gamma' | |
100 shp = find(pl, 'SHAPE'); | |
101 if isa(shp, 'ao') | |
102 shp = shp.y; | |
103 end | |
104 scl = find(pl, 'SCALE'); | |
105 if isa(scl, 'ao') | |
106 scl = scl.y; | |
107 end | |
108 distparams = [shp, scl]; | |
109 dist = 'gammadist'; | |
110 otherwise | |
111 distparams = []; | |
112 end | |
113 | |
114 | |
115 % run test | |
116 switch lower(model) | |
117 case 'empirical' | |
118 | |
119 % build parameters struct | |
120 params = struct(... | |
121 'conflevel',conf,... | |
122 'FontSize',ftsize,... | |
123 'LineWidth',lwidth); | |
124 | |
125 y1 = as(1).y; | |
126 % run over input aos | |
127 for ii=1:numel(as)-1 | |
128 y2 = as(ii+1).y; | |
129 if size(y1,1)~=size(y2,1) | |
130 % reshape | |
131 y2 = y2.'; | |
132 end | |
133 utils.math.cdfplot(y1, y2, params); | |
134 | |
135 end | |
136 | |
137 otherwise | |
138 | |
139 % build parameters struct | |
140 params = struct(... | |
141 'ProbDist',dist,... | |
142 'ShapeParam',shapeparam,... | |
143 'params',distparams,... | |
144 'conflevel',conf,... | |
145 'FontSize',ftsize,... | |
146 'LineWidth',lwidth); | |
147 | |
148 % run over input aos | |
149 for ii=1:numel(as) | |
150 | |
151 utils.math.cdfplot(as(ii).y, [], params); | |
152 | |
153 end | |
154 | |
155 end | |
156 | |
157 | |
158 end | |
159 | |
160 | |
161 %-------------------------------------------------------------------------- | |
162 % Get Info Object | |
163 %-------------------------------------------------------------------------- | |
164 function ii = getInfo(varargin) | |
165 if nargin == 1 && strcmpi(varargin{1}, 'None') | |
166 sets = {}; | |
167 pl = []; | |
168 elseif nargin == 1 && ~isempty(varargin{1}) && ischar(varargin{1}) | |
169 sets{1} = varargin{1}; | |
170 pl = getDefaultPlist(sets{1}); | |
171 else | |
172 sets = SETS(); | |
173 % get plists | |
174 pl(size(sets)) = plist; | |
175 for kk = 1:numel(sets) | |
176 pl(kk) = getDefaultPlist(sets{kk}); | |
177 end | |
178 end | |
179 % Build info object | |
180 ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: cdfplot.m,v 1.3 2011/07/08 09:45:35 luigi Exp $', sets, pl); | |
181 end | |
182 | |
183 | |
184 %-------------------------------------------------------------------------- | |
185 % Defintion of Sets | |
186 %-------------------------------------------------------------------------- | |
187 | |
188 function out = SETS() | |
189 out = {... | |
190 'empirical', ... | |
191 'normal', ... | |
192 'chi2', ... | |
193 'f', ... | |
194 'gamma' ... | |
195 }; | |
196 end | |
197 | |
198 %-------------------------------------------------------------------------- | |
199 % Get Default Plist | |
200 %-------------------------------------------------------------------------- | |
201 function plout = getDefaultPlist(set) | |
202 persistent pl; | |
203 persistent lastset; | |
204 if ~exist('pl', 'var') || isempty(pl) || ~strcmp(lastset, set) | |
205 pl = buildplist(set); | |
206 lastset = set; | |
207 end | |
208 plout = pl; | |
209 end | |
210 | |
211 function plo = buildplist(set) | |
212 plo = plist(); | |
213 | |
214 p = param({'TESTDISTRIBUTION', ['test data are compared with the given'... | |
215 'test distribution. Available choices are:<ol>'... | |
216 '<li>EMPIRICAL test the all the input object (starting from the second) against the first object.</li>'... | |
217 '<li>NORMAL test all the input objects against the Normal distribution</li>'... | |
218 '<li>CHI2 test all the input objects against the Chi square distribution</li>'... | |
219 '<li>F test all the input objects against the F distribution</li>'... | |
220 '<li>GAMMA test all the input objects against the Gamma distribution</li></ol>']}, ... | |
221 {1, {'EMPIRICAL', 'NORMAL', 'CHI2', 'F', 'GAMMA'}, paramValue.SINGLE}); | |
222 plo.append(p); | |
223 | |
224 p = param({'CONFLEVEL', 'Confidence level for confidence interval calculations.'},... | |
225 paramValue.DOUBLE_VALUE(0.95)); | |
226 plo.append(p); | |
227 | |
228 p = param({'SHAPEPARAM', ['In the case of comparison of a data series with a'... | |
229 'theoretical distribution and the data series is composed of correlated'... | |
230 'elements. K can be adjusted with a shape parameter in order to recover'... | |
231 'test fairness [3]. In such a case the test is performed for K* = Phi * K.'... | |
232 'Phi is the corresponding Shape parameter. The shape parameter depends on'... | |
233 'the correlations and on the significance value. It does not depend on'... | |
234 'data length.']}, paramValue.DOUBLE_VALUE(1)); | |
235 plo.append(p); | |
236 | |
237 p = param({'FONTSIZE', 'Font size for axis'}, paramValue.DOUBLE_VALUE(22)); | |
238 plo.append(p); | |
239 | |
240 p = param({'LINEWIDTH', 'Line Width'}, paramValue.DOUBLE_VALUE(2)); | |
241 plo.append(p); | |
242 | |
243 switch lower(set) | |
244 case 'empirical' | |
245 % do nothing | |
246 case 'normal' | |
247 p = param({'MEAN', ['The mean of the normal distribution']}, paramValue.DOUBLE_VALUE(0)); | |
248 plo.append(p); | |
249 p = param({'STD', ['The standard deviation of the normal distribution']}, paramValue.DOUBLE_VALUE(1)); | |
250 plo.append(p); | |
251 case 'chi2' | |
252 p = param({'DOF', ['Degrees of freedom of the chi square distribution']}, paramValue.DOUBLE_VALUE(2)); | |
253 plo.append(p); | |
254 case 'f' | |
255 p = param({'DOF1', ['First degree of freedom of the F distribution']}, paramValue.DOUBLE_VALUE(2)); | |
256 plo.append(p); | |
257 p = param({'DOF2', ['Second degree of freedom of the F distribution']}, paramValue.DOUBLE_VALUE(2)); | |
258 plo.append(p); | |
259 case 'gamma' | |
260 p = param({'SHAPE', ['Shape parameter (k) of the Gamma distribution']}, paramValue.DOUBLE_VALUE(2)); | |
261 plo.append(p); | |
262 p = param({'SCALE', ['Scale parameter (theta) of the Gamma distribution']}, paramValue.DOUBLE_VALUE(2)); | |
263 plo.append(p); | |
264 otherwise | |
265 end | |
266 | |
267 | |
268 | |
269 | |
270 end |