Mercurial > hg > ltpda
comparison m-toolbox/classes/@ao/diff.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f0afece42f48 |
---|---|
1 % DIFF differentiates the data in AO. | |
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
3 % | |
4 % DESCRIPTION: DIFF differentiates the data in AO. The result is a data | |
5 % series the same length as the input series. | |
6 % In case of method 'diff' computes the difference between two samples, in which | |
7 % case the resulting time object has the length of the input | |
8 % series -1 sample. | |
9 % CALL: bs = diff(a1,a2,a3,...,pl) | |
10 % bs = diff(as,pl) | |
11 % bs = as.diff(pl) | |
12 % | |
13 % INPUTS: aN - input analysis objects | |
14 % as - input analysis objects array | |
15 % pl - input parameter list | |
16 % | |
17 % OUTPUTS: bs - array of analysis objects, one for each input, | |
18 % containing the differentiated data | |
19 % | |
20 % <a href="matlab:utils.helper.displayMethodInfo('ao', 'diff')">Parameters Description</a> | |
21 % | |
22 % REFERENCES: | |
23 % [1] L. Ferraioli, M. Hueller and S. Vitale, Discrete derivative | |
24 % estimation in LISA Pathfinder data reduction, | |
25 % <a | |
26 % href="matlab:web('http://www.iop.org/EJ/abstract/0264-9381/26/9/094013/','-browser')">Class. Quantum Grav. 26 (2009) 094013.</a> | |
27 % [2] L. Ferraioli, M. Hueller and S. Vitale, Discrete derivative | |
28 % estimation in LISA Pathfinder data reduction | |
29 % <a href="matlab:web('http://arxiv.org/abs/0903.0324v1','-browser')">http://arxiv.org/abs/0903.0324v1</a> | |
30 % | |
31 % VERSION: $Id: diff.m,v 1.36 2011/08/03 19:18:56 adrien Exp $ | |
32 % | |
33 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
34 | |
35 % PARAMETERS: method - the method to use: [default: '3POINT'] | |
36 % 'diff' - like MATLABs diff | |
37 % compute difference between each two samples | |
38 % xaxis will be integers from 1 to length | |
39 % of resulting object | |
40 % '2POINT' - 2 point derivative computed as | |
41 % [y(i+1)-y(i)]./[x(i+1)-x(i)]. | |
42 % '3POINT' - 3 point derivative. Compute derivative | |
43 % at i as [y(i+1)-y(i-1)] / [x(i+1)-x(i-1)]. | |
44 % For i==1, the output is computed as | |
45 % [y(2)-y(1)]/[x(2)-x(1)]. The last sample | |
46 % is computed as [y(N)-y(N-1)]/[x(N)-x(N-1)]. | |
47 % '5POINT' - 5 point derivative. Compute derivative dx | |
48 % at i as | |
49 % [-y(i+2)+8*y(i+1)-8*y(i-1)+y(i-2)] / | |
50 % [3*(x(i+2)-x(i-2))]. | |
51 % For i==1, the output is computed as | |
52 % [y(2)-y(1)]/[x(2)-x(1)]. The last sample | |
53 % is computed as [y(N)-y(N-1)]/[x(N)-x(N-1)]. | |
54 % 'ORDER2' - Compute derivative using a 2nd order | |
55 % method. | |
56 % 'ORDER2SMOOTH' - Compute derivative using a 2nd order | |
57 % method with a parabolic fit to 5 | |
58 % consecutive samples. | |
59 % 'filter' - applies an IIR filter built from a | |
60 % single pole at the chosen frequency. The | |
61 % filter is applied forwards and backwards | |
62 % (filtfilt) to achieve the desired f^2 | |
63 % response. This only works for time-series | |
64 % AOs. For this method, you can specify the | |
65 % pole frequency with an additional parameter | |
66 % 'f0' [default: 1/Nsecs] | |
67 % 'FPS' - Calculates five points derivative using | |
68 % utils.math.fpsder function. If you call | |
69 % with this oprtion you may add also the | |
70 % parameters: | |
71 % 'ORDER' derivative order, supperted | |
72 % values are: | |
73 % 'ZERO', 'FIRST', 'SECOND' | |
74 % 'COEFF' coefficient used for the | |
75 % derivation. Refers to the fpsder help | |
76 % for further details. | |
77 % | |
78 % | |
79 | |
80 function varargout = diff(varargin) | |
81 | |
82 % Check if this is a call for parameters | |
83 if utils.helper.isinfocall(varargin{:}) | |
84 varargout{1} = getInfo(varargin{3}); | |
85 return | |
86 end | |
87 | |
88 import utils.const.* | |
89 utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); | |
90 | |
91 % Collect input variable names | |
92 in_names = cell(size(varargin)); | |
93 for ii = 1:nargin,in_names{ii} = inputname(ii);end | |
94 | |
95 % Collect all AOs and plists | |
96 [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); | |
97 pl = utils.helper.collect_objects(varargin(:), 'plist', in_names); | |
98 | |
99 % Decide on a deep copy or a modify | |
100 bs = copy(as, nargout); | |
101 | |
102 % combine plists | |
103 pl = parse(pl, getDefaultPlist()); | |
104 | |
105 % Extract method | |
106 method = find(pl, 'method'); | |
107 | |
108 for jj = 1:numel(bs) | |
109 | |
110 % Diff can't work for cdata objects since we need x data | |
111 if isa(bs(jj).data, 'cdata') | |
112 error('### diff doesn''t work with cdata AOs since we need an x-data vector.'); | |
113 end | |
114 | |
115 % Compute derivative with selected method | |
116 switch lower(method) | |
117 case 'diff' | |
118 yunit = bs(jj).yunits; | |
119 y = bs(jj).y; | |
120 x = bs(jj).x; | |
121 newX = x(1:end-1); % cut the last sample from the time series to make x and y same length | |
122 dy = diff(y); | |
123 bs(jj).data.setY(dy); | |
124 bs(jj).data.setX(newX); | |
125 bs(jj).setYunits(yunit); | |
126 case '2point' | |
127 x = bs(jj).data.getX; | |
128 dx = diff(x); | |
129 y = bs(jj).data.getY; | |
130 dy = diff(y); | |
131 z = dy./dx; | |
132 bs(jj).data.setY(z); | |
133 bs(jj).data.setX((x(1:end-1)+x(2:end))/2); | |
134 bs(jj).data.setYunits(bs(jj).data.yunits./bs(jj).data.xunits); | |
135 case '3point' | |
136 x = bs(jj).data.getX; | |
137 dx = diff(x); | |
138 y = bs(jj).data.getY; | |
139 z = zeros(size(y)); | |
140 z(2:end-1) = (y(3:end)-y(1:end-2)) ./ (dx(2:end)+dx(1:end-1)); | |
141 z(1) = (y(2)-y(1)) ./ (dx(1)); | |
142 z(end) = 2*z(end-1)-z(end-2); | |
143 bs(jj).data.setY(z); | |
144 bs(jj).data.setYunits(bs(jj).data.yunits./bs(jj).data.xunits); | |
145 case '5point' | |
146 x = bs(jj).data.getX; | |
147 dx = diff(x); | |
148 y = bs(jj).data.getY; | |
149 z = zeros(size(y)); | |
150 z(1) = (y(2)-y(1)) ./ (dx(1)); | |
151 z(2) = (y(3)-y(1))./(dx(2)+dx(1)); | |
152 z(3:end-2) = (-y(5:end) + 8.*y(4:end-1) - 8.*y(2:end-3) + y(1:end-4)) ./ (3.*(x(5:end)-x(1:end-4))); | |
153 z(end-1) = 2*z(end-2)-z(end-3); | |
154 z(end) = 2*z(end-1)-z(end-2); | |
155 bs(jj).data.setY(z); | |
156 bs(jj).data.setYunits(bs(jj).data.yunits./bs(jj).data.xunits); | |
157 case 'order2' | |
158 x = bs(jj).data.getX; | |
159 dx = diff(x); | |
160 y = bs(jj).data.getY; | |
161 z = zeros(size(y)); | |
162 m = length(y); | |
163 % y'(x1) | |
164 z(1) = (1/dx(1)+1/dx(2))*(y(2)-y(1))+... | |
165 dx(1)/(dx(1)*dx(2)+dx(2)^2)*(y(1)-y(3)); | |
166 % y'(xm) | |
167 z(m) = (1/dx(m-2)+1/dx(m-1))*(y(m)-y(m-1))+... | |
168 dx(m-1)/(dx(m-1)*dx(m-2)+dx(m-2)^2)*(y(m-2)-y(m)); | |
169 % y'(xi) (i>1 & i<m) | |
170 dx1 = repmat(dx(1:m-2),1,1); | |
171 dx2 = repmat(dx(2:m-1),1,1); | |
172 y1 = y(1:m-2); y2 = y(2:m-1); y3 = y(3:m); | |
173 z(2:m-1) = 1./(dx1.*dx2.*(dx1+dx2)).*... | |
174 (-dx2.^2.*y1+(dx2.^2-dx1.^2).*y2+dx1.^2.*y3); | |
175 bs(jj).data.setY(z); | |
176 bs(jj).data.setYunits(bs(jj).data.yunits./bs(jj).data.xunits); | |
177 case 'order2smooth' | |
178 x = bs(jj).data.getX; | |
179 y = bs(jj).data.getY; | |
180 dx = diff(x); | |
181 m = length(y); | |
182 if max(abs(diff(dx)))>sqrt(eps(max(abs(dx)))) | |
183 error('### The x-step must be constant for method ''ORDER2SMOOTH''') | |
184 elseif m<5 | |
185 error('### Length of y must be at least 5 for method ''ORDER2SMOOTH''.') | |
186 end | |
187 h = mean(dx); | |
188 z = zeros(size(y)); | |
189 % y'(x1) | |
190 z(1) = sum(y(1:5).*[-54; 13; 40; 27; -26])/70/h; | |
191 % y'(x2) | |
192 z(2) = sum(y(1:5).*[-34; 3; 20; 17; -6])/70/h; | |
193 % y'(x{m-1}) | |
194 z(m-1) = sum(y(end-4:end).*[6; -17; -20; -3; 34])/70/h; | |
195 % y'(xm) | |
196 z(m) = sum(y(end-4:end).*[26; -27; -40; -13; 54])/70/h; | |
197 % y'(xi) (i>2 & i<(N-1)) | |
198 Dc = [2 1 0 -1 -2]; | |
199 tmp = convn(Dc,y)/10/h; | |
200 z(3:m-2) = tmp(5:m); | |
201 bs(jj).data.setY(z); | |
202 bs(jj).data.setYunits(bs(jj).data.yunits./bs(jj).data.xunits); | |
203 case 'filter' | |
204 error('### Comming with release 2.5'); | |
205 case 'fps' | |
206 order = find(pl, 'ORDER'); | |
207 coeff = find(pl, 'COEFF'); | |
208 x = bs(jj).data.getX; | |
209 dx = x(2)-x(1); | |
210 fs = 1/dx; | |
211 y = bs(jj).data.getY; | |
212 params = struct('ORDER', order, 'COEFF', coeff, 'FS', fs); | |
213 z = utils.math.fpsder(y, params); | |
214 bs(jj).data.setY(z); | |
215 % setting units | |
216 switch lower(order) | |
217 case 'first' | |
218 bs(jj).data.setYunits(bs(jj).data.yunits./bs(jj).data.xunits); | |
219 case 'second' | |
220 bs(jj).data.setYunits(bs(jj).data.yunits.*bs(jj).data.xunits.^(-2)); | |
221 end | |
222 otherwise | |
223 error('### Unknown method for computing the derivative.'); | |
224 end | |
225 | |
226 % name for this object | |
227 bs(jj).name = sprintf('diff(%s)', ao_invars{jj}); | |
228 % add history | |
229 bs(jj).addHistory(getInfo('None'), pl, ao_invars(jj), bs(jj).hist); | |
230 end | |
231 | |
232 % Clear the errors since they don't make sense anymore | |
233 clearErrors(bs); | |
234 | |
235 % Set output | |
236 if nargout == numel(bs) | |
237 % List of outputs | |
238 for ii = 1:numel(bs) | |
239 varargout{ii} = bs(ii); | |
240 end | |
241 else | |
242 % Single output | |
243 varargout{1} = bs; | |
244 end | |
245 end | |
246 | |
247 %-------------------------------------------------------------------------- | |
248 % Get Info Object | |
249 %-------------------------------------------------------------------------- | |
250 function ii = getInfo(varargin) | |
251 | |
252 if nargin == 1 && strcmpi(varargin{1}, 'None') | |
253 sets = {}; | |
254 pl = []; | |
255 else | |
256 sets = {'Default'}; | |
257 pl = getDefaultPlist; | |
258 end | |
259 % Build info object | |
260 ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: diff.m,v 1.36 2011/08/03 19:18:56 adrien Exp $', sets, pl); | |
261 end | |
262 | |
263 %-------------------------------------------------------------------------- | |
264 % Get Default Plist | |
265 %-------------------------------------------------------------------------- | |
266 | |
267 function plout = getDefaultPlist() | |
268 persistent pl; | |
269 if exist('pl', 'var')==0 || isempty(pl) | |
270 pl = buildplist(); | |
271 end | |
272 plout = pl; | |
273 end | |
274 | |
275 function pl = buildplist() | |
276 pl = plist(); | |
277 | |
278 % Method | |
279 p = param({'method',['The method to use. Choose between:<ul>', ... | |
280 '' ... | |
281 '<li>''2POINT'' - 2 point derivative computed as [y(i+1)-y(i)]./[x(i+1)-x(i)]', ... | |
282 '</li>' ... | |
283 '<li>''3POINT'' - 3 point derivative. Compute derivative dx at i as <br>', ... | |
284 '<tt>[y(i+1)-y(i-1)] / [x(i+1)-x(i-1)]</tt><br>', ... | |
285 'For <tt>i==1</tt>, the output is computed as <tt>[y(2)-y(1)]/[x(2)-x(1)]</tt>.<br>', ... | |
286 'The last sample is computed as <tt>[y(N)-y(N-1)]/[x(N)-x(N-1)]</tt>', ... | |
287 '</li>' ... | |
288 '<li>''5POINT'' - 5 point derivative. Compute derivative dx at i as <br>', ... | |
289 '<tt>[-y(i+2)+8*y(i+1)-8*y(i-1)+y(i-2)] / [3*(x(i+2)-x(i-2))]</tt><br>', ... | |
290 'For <tt>i==1</tt>, the output is computed as <tt>[y(2)-y(1)]/[x(2)-x(1)]</tt><br>', ... | |
291 'The last sample is computed as <tt>[y(N)-y(N-1)]/[x(N)-x(N-1)]</tt>', ... | |
292 '</li>' ... | |
293 '<li>''ORDER2'' - Compute derivative using a 2nd order method', ... | |
294 '</li>' ... | |
295 '<li>''ORDER2SMOOTH'' - Compute derivative using a 2nd order method<br>', ... | |
296 'with a parabolic fit to 5 consecutive samples', ... | |
297 '</li>' ... | |
298 '<li>''filter'' - applies an IIR filter built from a single pole at the chosen frequency.<br>', ... | |
299 'The filter is applied forwards and backwards (filtfilt) to achieve the desired f^2<br>', ... | |
300 'response. This only works for time-series AOs.<br>', ... | |
301 'For this method, you can specify the pole frequency with an additional parameter ''F0'' (see below):', ... | |
302 '</li>'... | |
303 '<li>''FPS'' - Calculates five points derivative using utils.math.fpsder.<br>', ... | |
304 'When calling with this option you may add also the parameters ''ORDER'' (see below)<br>', ... | |
305 'and ''COEFF'' (see below)' ... | |
306 '</li>' ... | |
307 ]}, {1, {'2POINT', '3POINT', '5POINT', 'ORDER2', 'ORDER2SMOOTH', 'FILTER', 'FPS'}, paramValue.SINGLE}); | |
308 pl.append(p); | |
309 | |
310 % F0 | |
311 p = param({'f0','The pole frequency for the ''filter'' method.'}, {1, {'1/Nsecs'}, paramValue.OPTIONAL}); | |
312 pl.append(p); | |
313 | |
314 % Order | |
315 p = param({'ORDER','Derivative order'}, {1, {'ZERO', 'FIRST', 'SECOND'}, paramValue.SINGLE}); | |
316 pl.append(p); | |
317 | |
318 % Coeff | |
319 p = param({'COEFF',['Coefficient used for the derivation. <br>', ... | |
320 'Refer to the <a href="matlab:doc(''utils.math.fpsder'')">fpsder help</a> for further details']}, paramValue.EMPTY_DOUBLE); | |
321 pl.append(p); | |
322 | |
323 end | |
324 |