Mercurial > hg > ltpda
comparison m-toolbox/classes/@ao/firwhiten.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f0afece42f48 |
---|---|
1 % FIRWHITEN whitens the input time-series by building an FIR whitening filter. | |
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
3 % | |
4 % DESCRIPTION: FIRWHITEN whitens the input time-series by building an FIR | |
5 % whitening filter. The algorithm ultimately uses fir2() to | |
6 % build the whitening filter. | |
7 % | |
8 % ALGORITHM: | |
9 % 1) Make ASD of time-series | |
10 % 2) Perform running median to get noise-floor estimate (ao/smoother) | |
11 % 3) Invert noise-floor estimate | |
12 % 4) Call mfir() on noise-floor estimate to produce whitening filter | |
13 % 5) Filter data | |
14 % | |
15 % CALL: b = firwhiten(a, pl) % returns whitened time-series AOs | |
16 % [b, filts] = firwhiten(a, pl) % returns the mfir filters used | |
17 % [b, filts, nfs] = firwhiten(a, pl) % returns the noise-floor | |
18 % % estimates as fsdata AOs | |
19 % | |
20 % | |
21 % <a href="matlab:utils.helper.displayMethodInfo('ao', 'firwhiten')">Parameters Description</a> | |
22 % | |
23 % VERSION: $Id: firwhiten.m,v 1.29 2011/11/11 15:21:19 luigi Exp $ | |
24 % | |
25 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
26 | |
27 function varargout = firwhiten(varargin) | |
28 | |
29 callerIsMethod = utils.helper.callerIsMethod; | |
30 | |
31 % Check if this is a call for parameters | |
32 if utils.helper.isinfocall(varargin{:}) | |
33 varargout{1} = getInfo(varargin{3}); | |
34 return | |
35 end | |
36 | |
37 import utils.const.* | |
38 utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); | |
39 | |
40 % Collect input variable names | |
41 in_names = cell(size(varargin)); | |
42 for ii = 1:nargin,in_names{ii} = inputname(ii);end | |
43 | |
44 % Collect all AOs and plists | |
45 [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); | |
46 pl = utils.helper.collect_objects(varargin(:), 'plist', in_names); | |
47 | |
48 % Decide on a deep copy or a modify | |
49 bs = copy(as, nargout); | |
50 inhists = copy([as.hist],1); | |
51 | |
52 % combine plists | |
53 pl = parse(pl, getDefaultPlist()); | |
54 | |
55 % Extract necessary parameters | |
56 iNfft = find(pl, 'Nfft'); | |
57 bw = find(pl, 'bw'); | |
58 hc = find(pl, 'hc'); | |
59 swin = find(pl, 'win'); | |
60 order = find(pl, 'order'); | |
61 fwin = find(pl, 'FIRwin'); | |
62 Ntaps = find(pl, 'Ntaps'); | |
63 | |
64 % Loop over input AOs | |
65 filts = []; | |
66 nfs = []; | |
67 | |
68 for j=1:numel(bs) | |
69 if ~isa(bs(j).data, 'tsdata') | |
70 warning('!!! %s expects ao/tsdata objects. Skipping AO %s', mfilename, ao_invars{j}); | |
71 bs(j) = []; | |
72 else | |
73 % get Nfft | |
74 if iNfft < 0 || isempty(iNfft) | |
75 Nfft = length(bs(j).data.y); | |
76 else | |
77 Nfft = iNfft; | |
78 end | |
79 utils.helper.msg(msg.PROC1, 'building spectrum'); | |
80 % Make spectrum | |
81 axx = psd(bs(j), plist('Nfft', Nfft, 'Win', swin, 'Order', order, 'Scale', 'ASD')); | |
82 % make noise floor estimate | |
83 utils.helper.msg(msg.PROC1, 'estimating noise-floor'); | |
84 nxx = smoother(axx, plist('width', bw, 'hc', hc)); | |
85 % collect noise-floor estimates for output | |
86 nfs = [nfs nxx]; | |
87 % invert and make weights | |
88 w = 1./nxx; | |
89 % Make mfir object | |
90 utils.helper.msg(msg.PROC1, 'building filter'); | |
91 ff = mfir(w, plist('Win', fwin, 'N', Ntaps)); | |
92 % collect filters for output | |
93 filts = [filts ff]; | |
94 % Filter data | |
95 utils.helper.msg(msg.PROC1, 'filter data'); | |
96 filter(bs(j), ff); | |
97 % Set name | |
98 bs(j).name = sprintf('firwhiten(%s)', ao_invars{j}); | |
99 % add history | |
100 if ~callerIsMethod | |
101 bs(j).addHistory(getInfo('None'), pl, ao_invars(j), inhists(j)); | |
102 end | |
103 % clear errors | |
104 bs(j).clearErrors; | |
105 | |
106 end | |
107 end | |
108 | |
109 % Any errors are meaningless after this process, so clear them on both | |
110 % axes. | |
111 bs.clearErrors(plist('axis', 'xy')); | |
112 | |
113 % Set outputs | |
114 if nargout > 0 | |
115 varargout{1} = bs; | |
116 end | |
117 if nargout > 1 | |
118 varargout{2} = filts; | |
119 end | |
120 if nargout > 2 | |
121 varargout{3} = nfs; | |
122 end | |
123 end | |
124 | |
125 %-------------------------------------------------------------------------- | |
126 % Get Info Object | |
127 %-------------------------------------------------------------------------- | |
128 function ii = getInfo(varargin) | |
129 if nargin == 1 && strcmpi(varargin{1}, 'None') | |
130 sets = {}; | |
131 pl = []; | |
132 else | |
133 sets = {'Default'}; | |
134 pl = getDefaultPlist; | |
135 end | |
136 % Build info object | |
137 ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: firwhiten.m,v 1.29 2011/11/11 15:21:19 luigi Exp $', sets, pl); | |
138 end | |
139 | |
140 %-------------------------------------------------------------------------- | |
141 % Get Default Plist | |
142 %-------------------------------------------------------------------------- | |
143 function plout = getDefaultPlist() | |
144 persistent pl; | |
145 if exist('pl', 'var')==0 || isempty(pl) | |
146 pl = buildplist(); | |
147 end | |
148 plout = pl; | |
149 end | |
150 | |
151 function pl = buildplist() | |
152 | |
153 pl = plist(); | |
154 | |
155 % Nfft | |
156 p = param({'Nfft', ['The number of points in the FFT used to estimate<br>'... | |
157 'the power spectrum. If unspecified, this is calculated as Ndata/4.']}, paramValue.DOUBLE_VALUE(-1)); | |
158 pl.append(p); | |
159 | |
160 % BW | |
161 p = param({'bw', ['The bandwidth of the running median filter used to<br>'... | |
162 'estimate the noise-floor.']}, {1, {20}, paramValue.OPTIONAL}); | |
163 pl.append(p); | |
164 | |
165 % HC | |
166 p = param({'hc', 'The cutoff used to reject outliers (0-1).'}, {1, {0.8}, paramValue.OPTIONAL}); | |
167 pl.append(p); | |
168 | |
169 % Win | |
170 p = param({'Win', 'Spectral window used in spectral estimation.'}, paramValue.WINDOW); | |
171 pl.append(p); | |
172 | |
173 % Order | |
174 p = param({'Order',['The order of segment detrending:<ul>', ... | |
175 '<li>-1 - no detrending</li>', ... | |
176 '<li>0 - subtract mean</li>', ... | |
177 '<li>1 - subtract linear fit</li>', ... | |
178 '<li>N - subtract fit of polynomial, order N</li></ul>']}, paramValue.DETREND_ORDER); | |
179 pl.append(p); | |
180 | |
181 % FIR win | |
182 p = param({'FIRwin', 'The window to use in the filter design.'}, paramValue.WINDOW); | |
183 pl.append(p); | |
184 | |
185 % Ntaps | |
186 p = param({'Ntaps', 'The length of the FIR filter to build.'}, {1, {256}, paramValue.OPTIONAL}); | |
187 pl.append(p); | |
188 | |
189 end | |
190 | |
191 % PARAMETERS: | |
192 % | |
193 % 'Ntaps' - the length of the FIR filter to build [default: 256]. | |
194 % 'FIRwin' - the window to use in the filter design. Pass a | |
195 % specwin object of the desired type and of any length. | |
196 % [default: Hanning] | |
197 % | |
198 % parameters passed to ltpda_pwelch() | |
199 % | |
200 % 'Nfft' - The number of points in the FFT used to estimate | |
201 % the power spectrum. | |
202 % [default: Ndata/4] | |
203 % 'Win' - Spectral window used in spectral estimation. | |
204 % [default: Kaiser -150dB] | |
205 % 'Order' - order of segment detrending: | |
206 % -1 - no detrending | |
207 % 0 - subtract mean [default] | |
208 % 1 - subtract linear fit | |
209 % N - subtract fit of polynomial, order N | |
210 % | |
211 % (Segment overlap is taken from the window function.) | |
212 % | |
213 % parameters passed to ltpda_nfest() | |
214 % | |
215 % 'bw' - The bandwidth of the running median filter used to | |
216 % estimate the noise-floor. | |
217 % [default: 20 samples] | |
218 % 'hc' - The cutoff used to reject outliers (0-1) | |
219 % [default: 0.8] | |
220 |