Mercurial > hg > ltpda
comparison m-toolbox/classes/@ao/lcohere.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f0afece42f48 |
---|---|
1 % LCOHERE implement magnitude-squadred coherence estimation on a log frequency axis. | |
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
3 % | |
4 % DESCRIPTION: LCOHERE implement coherence estimation on a log frequency axis. | |
5 % The estimate is done by taking | |
6 % the ratio of the CPSD between the two inputs, Sxy, divided by | |
7 % the product of the PSDs of the inputs, Sxx and Syy, | |
8 % and is either magnitude-squared: (abs(Sxy))^2 / (Sxx * Syy) | |
9 % or complex value: Sxy / sqrt(Sxx * Syy) | |
10 % Here x is the first input, y is the second input | |
11 % | |
12 % CALL: b = lcohere(a1,a2,pl) | |
13 % | |
14 % INPUTS: a1 - input analysis object | |
15 % a2 - input analysis object | |
16 % pl - input parameter list | |
17 % | |
18 % OUTPUTS: b - output analysis object | |
19 % | |
20 % <a href="matlab:utils.helper.displayMethodInfo('ao', 'lcohere')">Parameters Description</a> | |
21 % | |
22 % VERSION: $Id: lcohere.m,v 1.30 2011/04/08 08:56:18 hewitson Exp $ | |
23 % | |
24 % References: "Improved spectrum estimation from digitized time series | |
25 % on a logarithmic frequency axis", Michael Troebs, Gerhard Heinzel, | |
26 % Measurement 39 (2006) 120-129. | |
27 % | |
28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
29 | |
30 function varargout = lcohere(varargin) | |
31 | |
32 % Check if this is a call for parameters | |
33 if utils.helper.isinfocall(varargin{:}) | |
34 varargout{1} = getInfo(varargin{3}); | |
35 return | |
36 end | |
37 | |
38 import utils.const.* | |
39 utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); | |
40 | |
41 if nargout == 0 | |
42 error('### lcohere cannot be used as a modifier. Please give an output variable.'); | |
43 end | |
44 | |
45 % Collect input variable names | |
46 in_names = cell(size(varargin)); | |
47 for ii = 1:nargin,in_names{ii} = inputname(ii);end | |
48 | |
49 % Collect all AOs | |
50 [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); | |
51 | |
52 % Apply defaults to plist | |
53 pl = applyDefaults(getDefaultPlist, varargin{:}); | |
54 | |
55 % Throw an error if input is not two AOs | |
56 if numel(as) ~= 2 | |
57 error('### lcohere only accepts two inputs AOs.'); | |
58 end | |
59 | |
60 % Compute coherence with lxspec | |
61 scale_type = find(pl, 'Type'); | |
62 switch lower(scale_type) | |
63 case 'c' | |
64 bs = ao.lxspec(as, pl, 'cohere', getInfo, ao_invars); | |
65 case 'ms' | |
66 bs = ao.lxspec(as, pl, 'mscohere', getInfo, ao_invars); | |
67 otherwise | |
68 error(['### Unknown coherence type: [' scale_type ']']); | |
69 end | |
70 | |
71 % Set output | |
72 varargout{1} = bs; | |
73 | |
74 end | |
75 | |
76 %-------------------------------------------------------------------------- | |
77 % Get Info Object | |
78 %-------------------------------------------------------------------------- | |
79 function ii = getInfo(varargin) | |
80 if nargin == 1 && strcmpi(varargin{1}, 'None') | |
81 sets = {}; | |
82 pl = []; | |
83 else | |
84 sets = {'Default'}; | |
85 pl = getDefaultPlist(); | |
86 end | |
87 % Build info object | |
88 ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: lcohere.m,v 1.30 2011/04/08 08:56:18 hewitson Exp $', sets, pl); | |
89 ii.setModifier(false); | |
90 ii.setArgsmin(2); | |
91 end | |
92 | |
93 %-------------------------------------------------------------------------- | |
94 % Get Default Plist | |
95 %-------------------------------------------------------------------------- | |
96 | |
97 function plout = getDefaultPlist() | |
98 persistent pl; | |
99 if ~exist('pl', 'var') || isempty(pl) | |
100 pl = buildplist(); | |
101 end | |
102 plout = pl; | |
103 end | |
104 | |
105 function pl = buildplist() | |
106 | |
107 % General plist for Welch-based, log-scale spaced spectral estimators | |
108 pl = plist.LPSD_PLIST; | |
109 | |
110 % Type | |
111 p = param({'Type',['type of output scaling. Choose from:<ul>', ... | |
112 '<li>MS - Magnitude-Squared Coherence:<br><tt>(abs(Sxy))^2 / (Sxx * Syy)</tt></li>', ... | |
113 '<li>C - Complex Coherence:<br><tt>Sxy / sqrt(Sxx * Syy)</tt></li></ul>']}, {1, {'C', 'MS'}, paramValue.SINGLE}); | |
114 pl.append(p); | |
115 | |
116 end | |
117 | |
118 % PARAMETERS: | |
119 % | |
120 % 'Kdes' - desired number of averages [default: 100] | |
121 % 'Jdes' - number of spectral frequencies to compute [default: 1000] | |
122 % 'Lmin' - minimum segment length [default: 0] | |
123 % 'Win' - the window to be applied to the data to remove the | |
124 % discontinuities at edges of segments. [default: taken from | |
125 % user prefs] | |
126 % Only the design parameters of the window object are | |
127 % used. Enter either: | |
128 % - a specwin window object OR | |
129 % - a string value containing the window name | |
130 % e.g., plist('Win', 'Kaiser', 'psll', 200) | |
131 % 'Olap' - segment percent overlap [default: -1, (taken from window function)] | |
132 % 'Type' - type of output scaling. Choose from: | |
133 % MS - Magnitude-Squared Coherence (abs(Sxy))^2 / (Sxx * Syy) | |
134 % C - Complex Coherence Sxy / sqrt(Sxx * Syy) [default] | |
135 % 'Order' - order of segment detrending | |
136 % -1 - no detrending | |
137 % 0 - subtract mean [default] | |
138 % 1 - subtract linear fit | |
139 % N - subtract fit of polynomial, order N |