Mercurial > hg > ltpda
comparison m-toolbox/classes/@ao/mcmc.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f0afece42f48 |
---|---|
1 % MCMC estimates paramters using a Monte Carlo Markov Chain. | |
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
3 % | |
4 % DESCRIPTION: MCMC estimate the parameters of a given model given | |
5 % inputs, outputs and noise using a Metropolis algorithm. | |
6 % It handles (1 input / 1 output) systems, (2 input / 1 output) systems, | |
7 % and (2 input / 2 output) systems. | |
8 % | |
9 % CALL: b = mcmc(in,out,pl) | |
10 % | |
11 % INPUTS: out - analysis objects with measured outputs | |
12 % | |
13 % pl - parameter list | |
14 % | |
15 % OUTPUTS: b - pest object contatining estimate information | |
16 % | |
17 % <a href="matlab:utils.helper.displayMethodInfo('ao', 'mcmc')">Parameters Description</a> | |
18 % | |
19 % VERSION: $Id: mcmc.m,v 1.24 2011/11/16 15:21:13 nikos Exp $ | |
20 % | |
21 % References: "Catching supermassive black holes binaries without a net" | |
22 % N.J. Cornish, E.K. Porter, Phys.Rev.D 75, 021301, 2007 | |
23 % | |
24 % TODO: multiple chain option not implemented yet | |
25 % metropolis/hastings not implemented | |
26 % | |
27 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
28 | |
29 function varargout = mcmc(varargin) | |
30 | |
31 % Check if this is a call for parameters | |
32 if utils.helper.isinfocall(varargin{:}) | |
33 varargout{1} = getInfo(varargin{3}); | |
34 return | |
35 end | |
36 | |
37 import utils.const.* | |
38 utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); | |
39 | |
40 % Method can not be used as a modifier | |
41 if nargout == 0 | |
42 error('### mcmc cannot be used as a modifier. Please give an output variable.'); | |
43 end | |
44 | |
45 % Collect input variable names | |
46 in_names = cell(size(varargin)); | |
47 for ii = 1:nargin,in_names{ii} = inputname(ii);end | |
48 | |
49 % Collect all AOs smodels and plists | |
50 [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); | |
51 pl = utils.helper.collect_objects(varargin(:), 'plist', in_names); | |
52 | |
53 % Decide on a deep copy or a modify | |
54 out = copy(as, nargout); | |
55 | |
56 % Combine plists | |
57 pl = parse(pl, getDefaultPlist); | |
58 | |
59 | |
60 % Get parameters from plist | |
61 mtxin = find(pl,'input'); | |
62 noi = find(pl,'noise'); | |
63 mdlin = find(pl,'model'); | |
64 | |
65 % Decide on a deep copy or a modify | |
66 in = copy(mtxin, nargout); | |
67 mdl = copy(mdlin, nargout); | |
68 | |
69 numexp = numel(in(1,:)); | |
70 numchannels_in = numel(in(:,1)); | |
71 numchannels_out = numel(out(:,1)); | |
72 | |
73 if (numel(in) ~= numel(out)) | |
74 error('### Dimensions of input and output must be equal.'); | |
75 end | |
76 | |
77 % Redefining the ao inputs as matrix objects | |
78 for ii = 1:numexp | |
79 matin(ii) = matrix(in(:,ii),plist('shape',[numchannels_in 1])); | |
80 matout(ii) = matrix(out(:,ii),plist('shape',[numchannels_in 1])); | |
81 matnoise(ii) = matrix(noi(:,ii),plist('shape',[numchannels_in 1])); | |
82 end | |
83 | |
84 switch class(mdl) | |
85 case 'smodel' | |
86 matmodel = matrix(mdl); | |
87 case 'ssm' | |
88 matmodel = mdl; | |
89 case 'matrix' | |
90 matmodel = mdl; | |
91 end | |
92 | |
93 pl = pset(pl,'model',matmodel,'input',matin,'noise',matnoise); | |
94 mcmc_obj = mcmc(matout,pl); | |
95 | |
96 | |
97 % Set output | |
98 varargout{1} = mcmc_obj; | |
99 | |
100 end | |
101 | |
102 | |
103 | |
104 %-------------------------------------------------------------------------- | |
105 % Get Info Object | |
106 %-------------------------------------------------------------------------- | |
107 function ii = getInfo(varargin) | |
108 if nargin == 1 && strcmpi(varargin{1}, 'None') | |
109 sets = {}; | |
110 pl = []; | |
111 else | |
112 sets = {'Default'}; | |
113 pl = getDefaultPlist; | |
114 end | |
115 % Build info object | |
116 ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: mcmc.m,v 1.24 2011/11/16 15:21:13 nikos Exp $', sets, pl); | |
117 end | |
118 | |
119 %-------------------------------------------------------------------------- | |
120 % Get Default Plist | |
121 %-------------------------------------------------------------------------- | |
122 function plout = getDefaultPlist() | |
123 persistent pl; | |
124 if exist('pl', 'var')==0 || isempty(pl) | |
125 pl = buildplist(); | |
126 end | |
127 plout = pl; | |
128 end | |
129 | |
130 function pl = buildplist() | |
131 pl = plist(); | |
132 | |
133 % N | |
134 p = param({'N','number of samples of the chain.'}, paramValue.DOUBLE_VALUE(1000)); | |
135 pl.append(p); | |
136 | |
137 % Sigma | |
138 p = param({'cov','covariance of the gaussian jumping distribution.'}, paramValue.DOUBLE_VALUE(1e-4)); | |
139 pl.append(p); | |
140 | |
141 % Param | |
142 p = param({'Fitparams','A cell array of evaluated parameters.'}, paramValue.EMPTY_DOUBLE); | |
143 pl.append(p); | |
144 | |
145 % Input | |
146 p = param({'input','A matrix array of input signals.'}, paramValue.EMPTY_STRING); | |
147 pl.append(p); | |
148 | |
149 % Frequencies | |
150 p = param({'frequencies','Range of frequencies where the analysis is performed. If an array, only first and last are used'}, paramValue.EMPTY_DOUBLE); | |
151 pl.append(p); | |
152 | |
153 % Noise | |
154 p = param({'noise','An array of noise spectrum (PSD) used to compute the likelihood.<ul>', ... | |
155 '<li>1 channel - Input one object</li>', ... | |
156 '<li>2 channel - Input four objects defining the power spectrum matrix </li>',... | |
157 '</ul>'}, paramValue.EMPTY_STRING); | |
158 pl.append(p); | |
159 | |
160 % Model | |
161 p = param({'model','An array of models.',... | |
162 '<li>1 input / 1 output - Input one object</li>', ... | |
163 '<li>2 input / 1 output - Input two objects</li>', ... | |
164 '<li>2 channel (2 input/ 2 output) - Input four objects defining the transfer function matrix </li>',... | |
165 '</ul>'}, paramValue.EMPTY_STRING); | |
166 pl.append(p); | |
167 | |
168 % Search | |
169 p = param({'search','Set to true to use bigger jumps in parameter space during annealing and cool down.'}, paramValue.TRUE_FALSE); | |
170 pl.append(p); | |
171 | |
172 % Simplex | |
173 p = param({'simplex','Set to true to perform a simplex search to find the starting parameters of the MCMC chain.'}, paramValue.TRUE_FALSE); | |
174 pl.append(p); | |
175 | |
176 % heat | |
177 p = param({'heat','The heat index flattening likelihood surface during annealing.'}, paramValue.DOUBLE_VALUE(1)); | |
178 pl.append(p); | |
179 | |
180 % Tc | |
181 p = param({'Tc','An array of two values setting the initial and final value for the cooling down.'}, paramValue.EMPTY_DOUBLE); | |
182 pl.append(p); | |
183 | |
184 % x0 | |
185 p = param({'x0','The proposed initial values.'}, paramValue.EMPTY_DOUBLE); | |
186 pl.append(p); | |
187 | |
188 % jumps | |
189 p = param({'jumps','An array of four numbers setting the rescaling of the covariance matrix during the search phase.',... | |
190 'The first value is the one applied by default, the following thhree apply just when the chain sample is',... | |
191 'mod(10), mod(25) and mod(100) respectively.'}, paramValue.EMPTY_DOUBLE); | |
192 pl.append(p); | |
193 | |
194 % plot | |
195 p = param({'plot','Select indexes of the parameters to be plotted.'}, paramValue.EMPTY_DOUBLE); | |
196 pl.append(p); | |
197 | |
198 % debug | |
199 p = param({'debug','Set to true to get debug information of the MCMC process.'}, paramValue.FALSE_TRUE); | |
200 pl.append(p); | |
201 | |
202 p = param({'prior','Mean, sigma and normalization factor for priors. Still under test'}, paramValue.EMPTY_STRING); | |
203 pl.append(p); | |
204 | |
205 p = param({'anneal',['Choose type of annealing during sampling. Default value is ',... | |
206 'simulated annealing. Choose "thermo" for annealing with a thermostat.',... | |
207 ' SNR is computed and if it is larger than a fixed value SNR0 (provided also in the plist), ',... | |
208 'then the chains are heated by a factor of (SNR(1)/SNR0)^2. Choosing "simple" ',... | |
209 'the deviation of the loglikelihood of every 10 points in the chains is stored. If this deviation ',... | |
210 'is larger or smaller than two fixed values the chains are cooled or heated respectively.']}, {1, {'simul','thermo', 'simple'}, paramValue.SINGLE}); | |
211 pl.append(p); | |
212 | |
213 p = param({'SNR0','Fixed value for thermostated annealing.'}, {1, {200}, paramValue.OPTIONAL}); | |
214 pl.append(p); | |
215 | |
216 p = param({'DeltaL',['Deviation of Loglikelihood for 10 points of the chains. Used for',... | |
217 'the "simple" choice of annealing with a thermostat.']}, {1, {[100 600 2 3]}, paramValue.OPTIONAL}); | |
218 pl.append(p); | |
219 | |
220 end | |
221 | |
222 | |
223 % PARAMETERS: J - number of chains to compute. | |
224 % sigma - dispersion of the jumping distribution. | |
225 % range - range where the parameteters are sampled. | |
226 % param - a cell array of evaluated parameters (from the | |
227 % smodel). | |
228 % Tc - an array with two values (default: 0, i.e. no annealing). | |
229 % heat - heat index flattening likelihood surface (default: 1) | |
230 % x0 - proposed initial values, if empty selected randomly. | |
231 % (default: empty) | |
232 | |
233 |