Mercurial > hg > ltpda
comparison m-toolbox/classes/@ao/quasiSweptSine.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 (2011-11-23) |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f0afece42f48 |
---|---|
1 % QUASISWEPTSING computes a transfer function from swept-sine measurements | |
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
3 % | |
4 % DESCRIPTION: QUASISWEPTSING computes a transfer function from discrete | |
5 % swept-sine measurements. | |
6 % | |
7 % In order for the calculation to work, you need to give it an array of | |
8 % start and stop times (or durations), and (optionally) an array of | |
9 % amplitudes and frequencies of the injected sine-waves. If you don't | |
10 % specify the frequencies, you must give a time-series of the injected | |
11 % signal and the algorithm will try to determine the amplitudes and | |
12 % frequencies from the data. | |
13 % | |
14 % | |
15 % CALL: T = quasiSweptSine(out, pl); | |
16 % | |
17 % INPUTS: out - The measured output of the system | |
18 % PL - parameter list | |
19 % | |
20 % OUTPUT: T - the measured transfer function | |
21 % | |
22 % The procinfo of the output AOs contains the following fields: | |
23 % | |
24 % 'frequencies' - the frequencies used in the DFT estimation. | |
25 % 'timespans' - an array of timespan objects, one for each sine-wave | |
26 % segment | |
27 % | |
28 % | |
29 % <a href="matlab:utils.helper.displayMethodInfo('ao', 'quasiSweptSine')">Parameters Description</a> | |
30 % | |
31 % VERSION: $Id: quasiSweptSine.m,v 1.10 2011/04/08 08:56:16 hewitson Exp $ | |
32 % | |
33 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
34 | |
35 | |
36 function varargout = quasiSweptSine(varargin) | |
37 | |
38 % check if this is a call for parameters | |
39 if utils.helper.isinfocall(varargin{:}) | |
40 varargout{1} = getInfo(varargin{3}); | |
41 return | |
42 end | |
43 | |
44 % tell the system we are runing | |
45 import utils.const.* | |
46 utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); | |
47 | |
48 % collect input variable names | |
49 in_names = cell(size(varargin)); | |
50 for ii = 1:nargin,in_names{ii} = inputname(ii);end | |
51 | |
52 % collect all AOs and plists | |
53 [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); | |
54 pl = utils.helper.collect_objects(varargin(:), 'plist', in_names); | |
55 | |
56 if nargout == 0 | |
57 error('### quasiSweptSine can not be used as a modifier method. Please give at least one output'); | |
58 end | |
59 | |
60 % Make copies or handles to inputs | |
61 bs = copy(as, nargout); | |
62 | |
63 % combine plists | |
64 pl = parse(pl, getDefaultPlist()); | |
65 | |
66 % Parameters | |
67 input = pl.find('input'); | |
68 startTimes = pl.find('Start times'); | |
69 stopTimes = pl.find('Stop times'); | |
70 durations = pl.find('durations'); | |
71 amplitudes = pl.find('amplitudes'); | |
72 frequencies = pl.find('frequencies'); | |
73 % phases = pl.find('phases'); | |
74 inUnits = pl.find('Input Units'); | |
75 win = pl.find('Win'); | |
76 Nerror = pl.find('Nerror'); | |
77 | |
78 if isa(input, 'ao') && ~isa(input.data, 'tsdata') | |
79 utils.helper.err('quasiSweptSine requires time-series as input'); | |
80 end | |
81 | |
82 | |
83 %--------------------------------------------------- | |
84 %--------- Convert the times to timespans | |
85 if isempty(durations) && isempty(stopTimes) | |
86 utils.helper.err('You need to specify either an array of stop times, or an array of durations'); | |
87 end | |
88 | |
89 | |
90 %--------------------------------------------------- | |
91 %--------- if we have the input, we use it to determine amplitudes and | |
92 %--------- frequencies | |
93 | |
94 if isempty(input) && isempty(amplitudes) | |
95 utils.helper.err('You need to specify either an input signal, or a full description of the signals including amplitudes and frequecies.'); | |
96 end | |
97 | |
98 computeFrequecies = false; | |
99 if isempty(frequencies) | |
100 computeFrequecies = true; | |
101 end | |
102 | |
103 | |
104 % Go through each ao | |
105 for jj=1:numel(bs) | |
106 | |
107 | |
108 if ~isa(bs.data, 'tsdata') | |
109 utils.helper.err('quasiSweptSine requires time-series as input'); | |
110 end | |
111 | |
112 [timespans, startTimes, stopTimes] = generateTimespans(bs(jj).t0, startTimes, stopTimes, durations); | |
113 | |
114 | |
115 % Go through each time-span | |
116 Txx = zeros(size(timespans)); | |
117 dT = zeros(size(timespans)); | |
118 for kk=1:numel(timespans) | |
119 if isa(input, 'ao') | |
120 inseg = input.split(plist('timespan', timespans(kk))); | |
121 else | |
122 % We don't have an input, so we need to create inputs from the | |
123 % signal specs | |
124 | |
125 inseg = ao(plist('waveform', 'sine wave', ... | |
126 'nsecs', timespans(kk).interval, ... | |
127 'fs', bs(jj).fs, ... | |
128 'A', amplitudes(kk), ... | |
129 'f', frequencies(kk), ... | |
130 'toff', 0, ... | |
131 't0', startTimes(kk), ... | |
132 'yunits', inUnits)); | |
133 end | |
134 if computeFrequecies | |
135 b = sineParams(inseg, plist('N', 1)); | |
136 frequencies(kk) = b.y(2); | |
137 end | |
138 | |
139 utils.helper.msg(msg.PROC1, 'Computing TF at %g Hz', frequencies(kk)); | |
140 | |
141 % Window | |
142 w = ao(plist('win', win, 'length', inseg.len)); | |
143 | |
144 % Output | |
145 outseg = bs(jj).split(plist('timespan', timespans(kk))); | |
146 | |
147 % Compute DFT | |
148 fs = outseg.data.fs; | |
149 N = outseg.len; | |
150 J = -2*pi*1i.*(0:N-1)/fs; | |
151 outxx = exp(frequencies(kk)*J)*(w.y.*outseg.data.getY); | |
152 inxx = exp(frequencies(kk)*J)*(w.y.*inseg.data.getY); | |
153 Txx(kk) = outxx./inxx; | |
154 | |
155 % Compute error | |
156 % | |
157 nout = noiseAroundLine(outseg, frequencies(kk), Nerror); | |
158 nin = noiseAroundLine(inseg, frequencies(kk), Nerror); | |
159 snr1 = abs(outxx)./nout; | |
160 snr2 = abs(inxx)./nin; | |
161 dT(kk) = abs(Txx(kk)) * sqrt( (1./snr1)^2 + (1./snr2)^2); | |
162 | |
163 | |
164 end % End loop over timespans (segments) | |
165 | |
166 % Make output | |
167 bs(jj).data = fsdata(frequencies, Txx, bs(jj).data.fs); | |
168 bs(jj).data.dy = dT; | |
169 bs(jj).data.setXunits('Hz'); | |
170 bs(jj).data.setYunits(outseg.yunits./inseg.yunits); | |
171 % Set name | |
172 bs(jj).name = sprintf('sweptsine(%s,%s)', input.name, ao_invars{jj}); | |
173 % Set procinfo | |
174 bs(jj).procinfo = plist('frequencies', frequencies, ... | |
175 'timespan', timespans); | |
176 % Add history | |
177 bs(jj).addHistory(getInfo('None'), pl, ao_invars(jj), bs(jj).hist); | |
178 | |
179 end % Loop over input aos | |
180 | |
181 % set outputs | |
182 varargout{1} = bs; | |
183 | |
184 end | |
185 | |
186 function n = noiseAroundLine(sig, f0, N) | |
187 | |
188 xx = abs(fft(sig)); | |
189 | |
190 % get the noise floor around the frequency of interest | |
191 % - we need the bin that is nearest the frequency | |
192 f = abs(xx.x - f0); | |
193 [m, mi] = min(f); | |
194 % xx.x(mi) | |
195 % iplot(xx) | |
196 % plot(xx.x(mi), xx.y(mi), 'x') | |
197 | |
198 M = N-1; | |
199 % Measure below the line frequency if we can | |
200 nl = 0; | |
201 if (mi>1) | |
202 ls = max(1, mi-2*M); | |
203 le = max(1, mi-M); | |
204 nl = xx.y(ls:le); | |
205 end | |
206 % Measure above the line frequency if we can | |
207 nu = 0; | |
208 if mi<xx.len | |
209 us = min(xx.len, mi+M); | |
210 ue = min(xx.len, mi+2*M); | |
211 nu = xx.y(us:ue); | |
212 end | |
213 n = mean([nl;nu]); | |
214 | |
215 end | |
216 | |
217 function [ts, startTimes, stopTimes] = generateTimespans(t0, startTimes, stopTimes, durations) | |
218 | |
219 | |
220 if isempty(durations) && numel(startTimes) ~= numel(stopTimes) | |
221 utils.helper.err('You need to specify the same number of start and stop times.'); | |
222 end | |
223 if isempty(stopTimes) && numel(startTimes) ~= numel(durations) | |
224 utils.helper.err('You need to specify the same number of durations and stop times.'); | |
225 end | |
226 | |
227 | |
228 ts = timespan.initObjectWithSize(1,numel(startTimes)); | |
229 | |
230 % Convert to time objects | |
231 if iscell(startTimes) | |
232 startTimes = time(startTimes); | |
233 end | |
234 if isnumeric(startTimes) | |
235 newStarts = time.initObjectWithSize(1,numel(startTimes)); | |
236 for kk=1:numel(startTimes) | |
237 newStarts(kk) = t0+startTimes(kk); | |
238 end | |
239 startTimes = newStarts; | |
240 end | |
241 | |
242 if isempty(durations) && iscell(stopTimes) | |
243 stopTimes = time(stopTimes); | |
244 end | |
245 | |
246 if isempty(durations) && isnumeric(stopTimes) | |
247 if isnumeric(stopTimes) | |
248 newStops = time.initObjectWithSize(1,numel(startTimes)); | |
249 for kk=1:numel(stopTimes) | |
250 newStops(kk) = t0+stopTimes(kk); | |
251 end | |
252 stopTimes = newStops; | |
253 end | |
254 end | |
255 | |
256 useDuration = isempty(stopTimes); | |
257 for kk=1:numel(startTimes) | |
258 if useDuration | |
259 ts(kk) = timespan(startTimes(kk), startTimes(kk)+durations(kk)); | |
260 else | |
261 ts(kk) = timespan(startTimes(kk), stopTimes(kk)); | |
262 end | |
263 end | |
264 | |
265 end | |
266 | |
267 | |
268 % get info object | |
269 function ii = getInfo(varargin) | |
270 if nargin == 1 && strcmpi(varargin{1}, 'None') | |
271 sets = {}; | |
272 pl = []; | |
273 else | |
274 sets = {'Default'}; | |
275 pl = getDefaultPlist; | |
276 end | |
277 % build info object | |
278 ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.op, '$Id: quasiSweptSine.m,v 1.10 2011/04/08 08:56:16 hewitson Exp $', sets, pl); | |
279 end | |
280 | |
281 % get default plist | |
282 function plout = getDefaultPlist() | |
283 persistent pl; | |
284 if exist('pl', 'var')==0 || isempty(pl) | |
285 pl = buildplist(); | |
286 end | |
287 plout = pl; | |
288 end | |
289 | |
290 function pl = buildplist() | |
291 | |
292 % default plist for linear fitting | |
293 pl = plist(); | |
294 | |
295 % Input | |
296 p = param({'input', 'The input data series.'}, paramValue.EMPTY_DOUBLE); | |
297 pl.append(p); | |
298 | |
299 % Start times | |
300 p = param({'Start Times', 'A cell array of start times, or an array of time objects.'}, ... | |
301 paramValue.EMPTY_CELL); | |
302 pl.append(p); | |
303 | |
304 % Stop times | |
305 p = param({'Stop Times', 'A cell array of stop times, or an array of time objects.'}, ... | |
306 paramValue.EMPTY_CELL); | |
307 pl.append(p); | |
308 | |
309 % Durations | |
310 p = param({'Durations', 'An array of durations that can be used instead of the stop times.'}, ... | |
311 paramValue.EMPTY_DOUBLE); | |
312 pl.append(p); | |
313 | |
314 % Amplitudes | |
315 p = param({'Amplitudes', 'An array of amplitudes.'}, ... | |
316 paramValue.EMPTY_DOUBLE); | |
317 pl.append(p); | |
318 | |
319 % Frequencies | |
320 p = param({'Frequencies', 'An array of frequencies [Hz].'}, ... | |
321 paramValue.EMPTY_DOUBLE); | |
322 pl.append(p); | |
323 | |
324 % Input units | |
325 p = param({'Input Units', 'If you don''t give an input signal AO, you can specify the units of the signal that will be constructed internally.'}, ... | |
326 {1, {'V'}, paramValue.OPTIONAL}); | |
327 pl.append(p); | |
328 | |
329 % Window | |
330 p = param({'Win', 'A window to apply to each segment when computing the DFT.'}, ... | |
331 paramValue.WINDOW); | |
332 pl.append(p); | |
333 | |
334 % Error samples | |
335 p = param({'Nerror', ['The number of samples either side of the line frequency to use to estimate the noise floor.'... | |
336 'The noise is estimated from <br><br><tt>mean([y(idx-2*M:idx-M);y(idx+M:idx+2M)])</tt><br><br> where <tt>M=N-1</tt> and <tt>idx</tt> is the index '... | |
337 'of the bin nearest to the frequency of the signal.']}, ... | |
338 paramValue.DOUBLE_VALUE(5)); | |
339 pl.append(p); | |
340 | |
341 % % Phases | |
342 % p = param({'Phases', 'An array of phases [degrees].'}, paramValue.DOUBLE_VALUE(0)); | |
343 % pl.append(p); | |
344 | |
345 end |