Mercurial > hg > ltpda
comparison m-toolbox/classes/@ssm/steadyState.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f0afece42f48 |
---|---|
1 % STEADYSTATE returns a possible value for the steady state of an ssm. | |
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
3 % | |
4 % DESCRIPTION: STEADYSTATE returns a possible value for the steady state | |
5 % of the state space of an ssm with given inputs. | |
6 % | |
7 % CALL: [pl_out] = steadyState(sys, pl) | |
8 % | |
9 % INPUTS: | |
10 % - sys, an ssm object | |
11 % | |
12 % OUTPUTS: | |
13 % _ pl_out contains 'state', the random state position | |
14 % | |
15 % <a href="matlab:utils.helper.displayMethodInfo('ssm', 'steadyState')">Parameters Description</a> | |
16 % | |
17 % VERSION: $Id: steadyState.m,v 1.11 2011/04/08 08:56:23 hewitson Exp $ | |
18 % | |
19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
20 | |
21 % TO DO: Check input aos for the timestep, tsdata, and ssm.timestep | |
22 % options to be defined (NL case) | |
23 % add check if one input mach no ssm input variable | |
24 % allow use of other LTPDA functions to generate white noise | |
25 | |
26 | |
27 function varargout = steadyState(varargin) | |
28 | |
29 %% starting initial checks | |
30 | |
31 % Check if this is a call for parameters | |
32 if utils.helper.isinfocall(varargin{:}) | |
33 varargout{1} = getInfo(varargin{3}); | |
34 return | |
35 end | |
36 | |
37 utils.helper.msg(utils.const.msg.MNAME, ['running ', mfilename]); | |
38 | |
39 % Collect input variable names | |
40 in_names = cell(size(varargin)); | |
41 for ii = 1:nargin,in_names{ii} = inputname(ii);end | |
42 | |
43 % Collect all SSMs and plists | |
44 [sys, ssm_invars, rest] = utils.helper.collect_objects(varargin(:), 'ssm', in_names); | |
45 [pl, invars2, rest] = utils.helper.collect_objects(rest(:), 'plist'); | |
46 if ~isempty(rest) | |
47 pl = combine(pl, plist(rest{:})); | |
48 end | |
49 pl = combine(pl, getDefaultPlist()); | |
50 | |
51 %% begin function body | |
52 | |
53 if numel(sys)~=1 | |
54 error('simulate needs exactly one ssm as an input') | |
55 end | |
56 if ~sys.isnumerical | |
57 error(['error because system ',sys.name,' is not numerical']); | |
58 end | |
59 timestep = sys.timestep; | |
60 if timestep==0 | |
61 error('timestep should not be 0 in steadyState!!') | |
62 end | |
63 if pl.isparam('noise variable names') | |
64 error('The noise option used must be split between "covariance" and "cpsd". "noise variable names" does not exist anymore!') | |
65 end | |
66 sssizes = sys.sssizes; | |
67 %% collecting simulation i/o data | |
68 | |
69 constants_in = find(pl, 'constants'); | |
70 cov_in = find(pl, 'covariance'); | |
71 cpsd_in = find(pl, 'CPSD'); | |
72 noise_in = blkdiag(cov_in, cpsd_in/(timestep*2)); | |
73 [U1,S1,V1] = svd(noise_in.'); | |
74 if (sum(S1<0)>0) | |
75 error('Covariance matrix is not positive definite') | |
76 end | |
77 noise_mat = U1*sqrt(S1); | |
78 | |
79 %% modifying system's ordering | |
80 if find(pl, 'reorganize') | |
81 sys = reorganize(sys, pl, 'set', 'for simulate', 'internal', 'internal'); | |
82 end | |
83 | |
84 %% getting system's i/o sizes | |
85 inputSizes = sys.inputsizes; | |
86 | |
87 Nnoise = inputSizes(2); | |
88 Nconstants = inputSizes(3); | |
89 | |
90 if numel(diag(noise_in))~=Nnoise | |
91 error(['There are ' num2str(numel(diag(noise_in))) ' input noise variances and ' num2str(Nnoise) ' corresponding inputs indexed.' ]) | |
92 elseif numel(constants_in)~=Nconstants | |
93 error(['There are ' num2str(numel(constants_in)) ' input constants and ' num2str(Nconstants) ' corresponding inputs indexed.' ]) | |
94 end | |
95 | |
96 A = sys.amats{1,1}; | |
97 Bnoise = sys.bmats{1,2} * noise_mat; | |
98 Bcst = sys.bmats{1,3} * reshape(constants_in, Nconstants, 1); | |
99 | |
100 %% counting powers of 2 to use for initilization | |
101 nSteps = 500; | |
102 tSteady = find(pl, 'tSteady'); | |
103 nPow2 = nextpow2(tSteady/(nSteps*timestep)); | |
104 | |
105 %% simulation loop | |
106 A_pow2=cell(1,nPow2); | |
107 G_pow2=cell(1,nPow2); | |
108 | |
109 A_pow2{1} = A; | |
110 G_pow2{1} = Bcst; | |
111 | |
112 %% method 1 : iterate equations with growing time-step for a very long time | |
113 E_pow2=cell(1,nPow2); | |
114 E_pow2{1} = Bnoise; | |
115 for i_pow2 = 2:nPow2 | |
116 G_pow2{i_pow2} = G_pow2{i_pow2-1} + A_pow2{i_pow2-1}*G_pow2{i_pow2-1}; | |
117 E_pow2{i_pow2} = E_pow2{i_pow2-1} + A_pow2{i_pow2-1}*E_pow2{i_pow2-1}; | |
118 A_pow2{i_pow2} = A_pow2{i_pow2-1}^2; | |
119 end | |
120 lastX = zeros(size(A,1),1); | |
121 for i_pow2 = fliplr(1:nPow2) | |
122 A = A_pow2{i_pow2}; | |
123 G = G_pow2{i_pow2}; | |
124 E = E_pow2{i_pow2}; | |
125 noise_array = randn(size(E,2), nSteps); | |
126 for i_steps = 1:nSteps | |
127 lastX = A*lastX + G + E*noise_array(:,i_steps) ; | |
128 end | |
129 end | |
130 | |
131 %% method 2 : compute the limit state-mean and covariance as i_pow2 tends to infinity | |
132 % P_pow2=cell(1,nPow2); | |
133 % P_pow2{1} = Bnoise*Bnoise.'; | |
134 % for i_pow2 = 2:nPow2 | |
135 % G_pow2{i_pow2} = G_pow2{i_pow2-1} + A_pow2{i_pow2-1}*G_pow2{i_pow2-1}; % taking step response to 2 longer time; | |
136 % P_pow2{i_pow2} = P_pow2{i_pow2-1} + A_pow2{i_pow2-1}*P_pow2{i_pow2-1}*(A_pow2{i_pow2-1}.');% taking state covariance to 2 longer time; | |
137 % A_pow2{i_pow2} = A_pow2{i_pow2-1}^2; | |
138 % end | |
139 % [U1,S1,V1] = svd(P_pow2{nPow2}); | |
140 % lastX = U1*sqrt(S1)*randn(size(A,1),1) + G_pow2{nPow2}; | |
141 | |
142 %% construct output analysis object | |
143 plist_out = plist('state', ssm.blockMatRecut(lastX,sssizes,1) ); | |
144 varargout = {plist_out}; | |
145 end | |
146 | |
147 | |
148 %-------------------------------------------------------------------------- | |
149 % Get Info Object | |
150 %-------------------------------------------------------------------------- | |
151 function ii = getInfo(varargin) | |
152 | |
153 if nargin == 1 && strcmpi(varargin{1}, 'None') | |
154 sets = {}; | |
155 pl = []; | |
156 else | |
157 sets = {'Default'}; | |
158 pl = getDefaultPlist; | |
159 end | |
160 % Build info object | |
161 ii = minfo(mfilename, 'ssm', 'ltpda', utils.const.categories.op, '$Id: steadyState.m,v 1.11 2011/04/08 08:56:23 hewitson Exp $', sets, pl); | |
162 end | |
163 | |
164 %-------------------------------------------------------------------------- | |
165 % Get Default Plist | |
166 %-------------------------------------------------------------------------- | |
167 function pl = getDefaultPlist() | |
168 pl = plist(); | |
169 | |
170 p = param({'cpsd variable names', 'A cell-array of strings specifying the desired input variable names.'}, {} ); | |
171 pl.append(p); | |
172 | |
173 p = param({'cpsd', 'The covariance of this noise between input ports for the <i>time-continuous</i> noise model.'}, []); | |
174 pl.append(p); | |
175 | |
176 p = param({'covariance variable names', 'A cell-array of strings specifying the desired input variable names.'}, {} ); | |
177 pl.append(p); | |
178 | |
179 p = param({'covariance', 'The covariance of this noise between input ports for the <i>time-continuous</i> noise model.'}, []); | |
180 pl.append(p); | |
181 | |
182 p = param({'constant variable names', 'A cell-array of strings of the desired input variable names.'}, {}); | |
183 pl.append(p); | |
184 | |
185 p = param({'constants', 'Array of DC values for the different corresponding inputs.'}, paramValue.DOUBLE_VALUE(zeros(0,1))); | |
186 pl.append(p); | |
187 | |
188 p = param({'tSteady', 'The settling time used in the calculation, in the same unit as the ssm''s timestep'}, paramValue.DOUBLE_VALUE(10^6) ); | |
189 pl.append(p); | |
190 | |
191 p = param({'reorganize', 'When set to 0, this means the ssm does not need be modified to match the requested i/o. Faster but dangerous!'}, paramValue.TRUE_FALSE); | |
192 pl.append(p); | |
193 | |
194 end | |
195 |