Mercurial > hg > ltpda
comparison m-toolbox/html_help/help/ug/franklin_ng_content.html @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f0afece42f48 |
---|---|
1 The following sections gives an introduction to the <a href="noisegen.html">generation of model noise</a> using the noise generator implemented in LTPDA. | |
2 <ul> | |
3 <li><a href="#franklin">Franklin's noise generator</a></li> | |
4 <li><a href="#description">Description</a></li> | |
5 <li><a href="#inputs">Inputs</a></li> | |
6 <li><a href="#outputs">Outputs</a></li> | |
7 <li><a href="#usage">Usage</a></li> | |
8 </ul> | |
9 <h2><a name="franklin">Franklin's noise generator</a></h2> | |
10 Franklin's noise generator is a method to generate arbitrarily long time series with a prescribed spectral density. | |
11 The algorithm is based on the following paper: | |
12 </p> | |
13 <p>Franklin, Joel N.: | |
14 <i> Numerical simulation of stationary and non-stationary gaussian | |
15 random processes </i>, SIAM review, Volume {<b> 7</b>}, Issue 1, page 68--80, 1965. | |
16 </p> | |
17 <p> | |
18 The Document <i> Generation of Random time series with prescribed spectra </i> by Gerhard Heinzel (S2-AEI-TN-3034) <br> corrects a mistake in the aforesaid paper and describes the practical implementation. | |
19 </p> | |
20 <p> | |
21 See <a href="noisegen.html">Generating model noise</a> for more general information on this. | |
22 </p> | |
23 <p> | |
24 Franklin's method does not require any 'warm up' period. It starts with a transfer function given as ratio of two polynomials.<br/> | |
25 The generator operates on a real state vector y of length n which is | |
26 maintained between invocations. It produces samples of the time series in equidistant steps <tt>T = 1/fs</tt>, where <tt>fs</tt> is the sampling frequency. | |
27 </p> | |
28 <p> | |
29 <ul> | |
30 <li> y0 = Tinit * r, on initialization | |
31 <li> yi = E * yi-1 + Tprop * r, to propagate | |
32 <li> xi = a * yi , the sampled time series. | |
33 </ul> | |
34 r is a vector of independent normal Gaussian random numbers | |
35 Tinit, E, Tprop which are real matrices and a which is a real vector are determined once by the algorithm. | |
36 </p> | |
37 | |
38 <h2><a name="description">Description</a></h2> | |
39 <p> | |
40 When an analysis object is constructed from a pole zero model Franklin's noise generator is called (compare <a href="ao_create.html#pzmodel">Creating AOs from pole zero models</a>). | |
41 </p> | |
42 | |
43 | |
44 <h2><a name="inputs">Inputs</a></h2> | |
45 for the function call the parameter list has to contain at least: | |
46 <ul> | |
47 <li> nsecs - number of seconds (length of time series) | |
48 <li> fs - sampling frequency | |
49 <li> pzmodel with gain | |
50 </ul> | |
51 | |
52 <h2><a name="outputs">Outputs</a></h2> | |
53 <ul> | |
54 <li> b - analysis object containing the resulting time series | |
55 </ul> | |
56 </p> | |
57 <h2><a name="usage">Usage</a></h2> | |
58 The analysis object constructor <a href="ao_create.html">ao</a> calls the following four functions when the input is a pzmodel. | |
59 <ul> | |
60 <li> ngconv | |
61 <li> ngsetup | |
62 <li> nginit | |
63 <li> ngprop | |
64 </ul> | |
65 <p> | |
66 First a parameter list of the input parameters is to be done. For further information on this look at <a href="plist_create.html#params">Creating parameter lists from parameters</a>.<br/> | |
67 </p> | |
68 <h2><a name="starting">Starting from a given pole/zero model</a></h2> | |
69 <p> | |
70 The parameter list should contain the number of seconds the resulting time series should have <tt>nsecs</tt> and the sampling frequency <tt>fs</tt>. <br/> | |
71 The constructor call should look like this: | |
72 </p> | |
73 <div class="fragment"><pre> | |
74 f1 = 5; | |
75 f2 = 10; | |
76 f3 = 1; | |
77 gain = 1; | |
78 fs = 10; <span class="comment">% sampling frequency</span> | |
79 nsecs = 100; <span class="comment">% number of seconds to be generated</span> | |
80 p = [pz(f1) pz(f2)]; | |
81 z = [pz(f3)]; | |
82 pzm = pzmodel(gain, p, z); | |
83 a = ao(pzm, plist(<span class="string">'nsecs'</span>, nsecs, <span class="string">'fs'</span>,fs)) | |
84 | |
85 </pre></div> | |
86 The output will be an analysis object <tt>a</tt> containing the time series with the spectrum described by the input pole-zero model. | |
87 </p> | |
88 | |
89 | |
90 |