Mercurial > hg > ltpda
comparison m-toolbox/html_help/help/ug/ltpda_training_topic_5_5.html @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f0afece42f48 |
---|---|
1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" | |
2 "http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd"> | |
3 | |
4 <html lang="en"> | |
5 <head> | |
6 <meta name="generator" content= | |
7 "HTML Tidy for Mac OS X (vers 1st December 2004), see www.w3.org"> | |
8 <meta http-equiv="Content-Type" content= | |
9 "text/html; charset=us-ascii"> | |
10 | |
11 <title>IFO/Temperature Example - signal subtraction (LTPDA Toolbox)</title> | |
12 <link rel="stylesheet" href="docstyle.css" type="text/css"> | |
13 <meta name="generator" content="DocBook XSL Stylesheets V1.52.2"> | |
14 <meta name="description" content= | |
15 "Presents an overview of the features, system requirements, and starting the toolbox."> | |
16 </head> | |
17 | |
18 <body> | |
19 <a name="top_of_page" id="top_of_page"></a> | |
20 | |
21 <p style="font-size:1px;"> </p> | |
22 | |
23 <table class="nav" summary="Navigation aid" border="0" width= | |
24 "100%" cellpadding="0" cellspacing="0"> | |
25 <tr> | |
26 <td valign="baseline"><b>LTPDA Toolbox</b></td><td><a href="../helptoc.html">contents</a></td> | |
27 | |
28 <td valign="baseline" align="right"><a href= | |
29 "ltpda_training_topic_5_4.html"><img src="b_prev.gif" border="0" align= | |
30 "bottom" alt="Non-linear least squares fitting of time series"></a> <a href= | |
31 "examplesindex.html"><img src="b_next.gif" border="0" align= | |
32 "bottom" alt="Examples"></a></td> | |
33 </tr> | |
34 </table> | |
35 | |
36 <h1 class="title"><a name="f3-12899" id="f3-12899"></a>IFO/Temperature Example - signal subtraction</h1> | |
37 <hr> | |
38 | |
39 <p> | |
40 | |
41 | |
42 | |
43 <p> | |
44 During this exercise we will: | |
45 <ol> | |
46 <li> Load the AOs with the IFO and Temperature data | |
47 <li> Load the transfer function of the data | |
48 <li> Split the TF to select the meaningful region only | |
49 <li> Fit the TF with <tt>zDomainFit</tt> | |
50 <li> Subtract the temperature contribution from the IFO signal | |
51 </ol> | |
52 </p> | |
53 | |
54 <p> | |
55 Let us load the test data and split out the 'good' part as we did in Topic 3: | |
56 </p> | |
57 | |
58 <div class="fragment"><pre> | |
59 ifo = ao(plist(<span class="string">'filename'</span>, <span class="string">'ifo_temp_example/ifo_fixed.xml'</span>)); | |
60 ifo.setName; | |
61 T = ao(plist(<span class="string">'filename'</span>, <span class="string">'ifo_temp_example/temp_fixed.xml'</span>)); | |
62 T.setName; | |
63 | |
64 <span class="comment">% Split out the good part of the data</span> | |
65 pl_split = plist(<span class="string">'split_type'</span>, <span class="string">'interval'</span>, ... | |
66 <span class="string">'start_time'</span>, ifo.t0 + 40800, ... | |
67 <span class="string">'end_time'</span>, ifo.t0 + 193500); | |
68 | |
69 ifo_red = split(ifo, pl_split); | |
70 T_red = split(T, pl_split); | |
71 </pre></div> | |
72 | |
73 <p> | |
74 These data are already preprocessed with <tt>ao/consolidate</tt> in order to set | |
75 the sampling frequency to 1Hz. <br/> | |
76 We could look at the data... | |
77 </p> | |
78 <div class="fragment"><pre> | |
79 iplot(ifo_red,T_red,plist(<span class="string">'arrangement'</span>, <span class="string">'subplots'</span>)) | |
80 </pre></div> | |
81 | |
82 <p> | |
83 <div align="center"> | |
84 <IMG src="images/ltpda_training_1/topic5/ltpda_training_5_5_1.png" align="center" border="0"> | |
85 </div> | |
86 </p> | |
87 | |
88 <p> | |
89 Let us load the transfer function estimate we made in Topic 3. | |
90 </p> | |
91 | |
92 <div class="fragment"><pre> | |
93 tf = ao(<span class="string">'ifo_temp_example/T_ifo_tf.xml'</span>); | |
94 </pre></div> | |
95 | |
96 <p> | |
97 The meaningful frequency region is in the range 2e-5 <i>Hz</i> - 1e-3 <i>Hz</i>. | |
98 Therefore we split the transfer function to extract only meaningful data. | |
99 </p> | |
100 | |
101 <div class="fragment"><pre> | |
102 tfsp = split(tf,plist(<span class="string">'frequencies'</span>, [2e-5 1e-3])); | |
103 iplot(tf,tfsp) | |
104 </pre></div> | |
105 | |
106 <p> | |
107 The plot compares full range TF with splitted TF | |
108 <div align="center"> | |
109 <IMG src="images/ltpda_training_1/topic5/ltpda_training_5_5_4.png" align="center" border="0"> | |
110 </div> | |
111 Once we have the proper transfer function, we could start the fitting process. | |
112 A rapid look to the TF data should convince us that we need a very simple object | |
113 to fit our data so we could try a fitting session "by hand". In other words, | |
114 it is more convenient to skip the automathic functionality of <tt>zDomainFit</tt>. | |
115 Moreover, we force <tt> zDomainFit </tt> to fit a stable model to data because | |
116 we want to output a stable filter. | |
117 </p> | |
118 | |
119 <div class="fragment"><pre> | |
120 plfit = plist(<span class="string">'FS'</span>,1,... | |
121 <span class="string">'AutoSearch'</span>,<span class="string">'off'</span>,... | |
122 <span class="string">'StartPolesOpt'</span>,<span class="string">'clog'</span>,... | |
123 <span class="string">'maxiter'</span>,20,... | |
124 <span class="string">'minorder'</span>,3,... | |
125 <span class="string">'maxorder'</span>,3,... | |
126 <span class="string">'weightparam'</span>,<span class="string">'abs'</span>,... | |
127 <span class="string">'Plot'</span>,<span class="string">'on'</span>,... | |
128 <span class="string">'ForceStability'</span>,<span class="string">'on'</span>,... | |
129 <span class="string">'CheckProgress'</span>,<span class="string">'off'</span>); | |
130 | |
131 fobj = zDomainFit(tfsp,plfit); | |
132 fobj.filters.setIunits(<span class="string">'K'</span>); | |
133 fobj.filters.setOunits(<span class="string">'m'</span>); | |
134 </pre></div> | |
135 | |
136 <p> | |
137 <div align="center"> | |
138 <IMG src="images/ltpda_training_1/topic5/ltpda_training_5_5_5.png" align="center" border="0"> | |
139 </div> | |
140 </p> | |
141 | |
142 <p> | |
143 It is time to filter temperature data with the fit output in order to | |
144 extract temperature contribution to interferometer output. Detrend | |
145 after the filtering is performed to subtract mean to data (bias subtraction). | |
146 </p> | |
147 | |
148 <div class="fragment"><pre> | |
149 ifoT = filter(T_red,fobj,plist(<span class="string">'bank'</span>,<span class="string">'parallel'</span>)); | |
150 ifoT.detrend(plist(<span class="string">'order'</span>,0)); | |
151 ifoT.simplifyYunits; | |
152 ifoT.setName; | |
153 </pre></div> | |
154 | |
155 <p> | |
156 Then we subtract temperature contribution from measured interferometer data | |
157 </p> | |
158 | |
159 <div class="fragment"><pre> | |
160 ifonT = ifo_red - ifoT; | |
161 ifonT.setName; | |
162 </pre></div> | |
163 | |
164 <p> | |
165 The figure reports measured interferometer data, temperature contribution | |
166 to interferometer output and interferometer output without thermal drifts. | |
167 </p> | |
168 | |
169 <div class="fragment"><pre> | |
170 iplot(ifo_red,ifoT,ifonT) | |
171 </pre></div> | |
172 | |
173 <p> | |
174 <div align="center"> | |
175 <IMG src="images/ltpda_training_1/topic5/ltpda_training_5_5_6.png" align="center" border="0"> | |
176 </div> | |
177 </p> | |
178 | |
179 <p> | |
180 If you now compare spectra of the original IFO signal and the one with the temperature contribution | |
181 removed, you should see something like the figure below: | |
182 </p> | |
183 <div class="fragment"><pre> | |
184 ifoxx = ifo_red.lpsd; | |
185 ifonTxx = ifonT.lpsd; | |
186 iplot(ifoxx,ifonTxx) | |
187 </pre></div> | |
188 <p> | |
189 <div align="center"> | |
190 <IMG src="images/ltpda_training_1/topic5/ltpda_training_5_5_7.png" align="center" border="0"> | |
191 </div> | |
192 </p> | |
193 | |
194 | |
195 | |
196 | |
197 | |
198 | |
199 | |
200 | |
201 | |
202 | |
203 | |
204 | |
205 | |
206 | |
207 | |
208 </p> | |
209 | |
210 <br> | |
211 <br> | |
212 <table class="nav" summary="Navigation aid" border="0" width= | |
213 "100%" cellpadding="0" cellspacing="0"> | |
214 <tr valign="top"> | |
215 <td align="left" width="20"><a href="ltpda_training_topic_5_4.html"><img src= | |
216 "b_prev.gif" border="0" align="bottom" alt= | |
217 "Non-linear least squares fitting of time series"></a> </td> | |
218 | |
219 <td align="left">Non-linear least squares fitting of time series</td> | |
220 | |
221 <td> </td> | |
222 | |
223 <td align="right">Examples</td> | |
224 | |
225 <td align="right" width="20"><a href= | |
226 "examplesindex.html"><img src="b_next.gif" border="0" align= | |
227 "bottom" alt="Examples"></a></td> | |
228 </tr> | |
229 </table><br> | |
230 | |
231 <p class="copy">©LTP Team</p> | |
232 </body> | |
233 </html> |