Mercurial > hg > ltpda
comparison m-toolbox/html_help/help/ug/ndim_ng_content.html @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f0afece42f48 |
---|---|
1 <!-- $Id: ndim_ng_content.html,v 1.6 2011/05/02 19:08:05 luigi Exp $ --> | |
2 | |
3 <!-- ================================================== --> | |
4 <!-- BEGIN CONTENT FILE --> | |
5 <!-- ================================================== --> | |
6 <!-- ===== link box: Begin ===== --> | |
7 <p> | |
8 <table border="1" width="80%"> | |
9 <tr> | |
10 <td> | |
11 <table border="0" cellpadding="5" class="categorylist" width="100%"> | |
12 <colgroup> | |
13 <col width="37%"/> | |
14 <col width="63%"/> | |
15 </colgroup> | |
16 <tbody> | |
17 <tr valign="top"> | |
18 <td> | |
19 <a href="#mchspectra">Multichannel Spectra</a> | |
20 </td> | |
21 <td>Theoretical background on multichannel spectra.</td> | |
22 </tr> | |
23 <tr valign="top"> | |
24 <td> | |
25 <a href="#NGTheory">Noise generation</a> | |
26 </td> | |
27 <td>Theoretical introduction to multichannel noise generation.</td> | |
28 </tr> | |
29 <tr valign="top"> | |
30 <td> | |
31 <a href="#ngMCH">Multichannel Noise Generation</a> | |
32 </td> | |
33 <td>Generation of multichannel noise with given cross-spectral density matrix.</td> | |
34 </tr> | |
35 <tr valign="top"> | |
36 <td> | |
37 <a href="#ng1D">Noisegen 1D</a> | |
38 </td> | |
39 <td>Generation of one-dimensional noise with given spectral density.</td> | |
40 </tr> | |
41 <tr valign="top"> | |
42 <td> | |
43 <a href="#ng2D">Noisegen 2D</a> | |
44 </td> | |
45 <td>Generation of two-dimensional noise with given cross-spectral density.</td> | |
46 </tr> | |
47 </tbody> | |
48 </table> | |
49 </td> | |
50 </tr> | |
51 </table> | |
52 </p> | |
53 <!-- ===== link box: End ====== --> | |
54 | |
55 | |
56 | |
57 <p> | |
58 </p> | |
59 <p> | |
60 The following sections gives an introduction to the generation of model | |
61 noise with a given cross spectral density. Further details can be found | |
62 in ref. [1]. | |
63 </p> | |
64 | |
65 <!-- ===== Multichannel Spectra Theory ====== --> | |
66 <h2><a name="mchspectra">Theoretical background on multichannel spectra</a></h2> | |
67 <p> | |
68 We define the autocorrelation function (ACF) of a stationary multichannel process as: | |
69 </p> | |
70 <div> | |
71 <IMG src="images/ngEqn1.gif" align="center" border="0"> | |
72 </div> | |
73 <p> | |
74 </p> | |
75 <p> | |
76 If the multichannel process is L dimensional then the kth element of the ACF is a LxL matrix: | |
77 </p> | |
78 <div> | |
79 <IMG src="images/ngEqn2.gif" align="center" border="0"> | |
80 </div> | |
81 <p> | |
82 </p> | |
83 <p> | |
84 The ACF matrix is not hermitian but have the property that: | |
85 </p> | |
86 <div> | |
87 <IMG src="images/ngEqn3.gif" align="center" border="0"> | |
88 </div> | |
89 <p> | |
90 </p> | |
91 <p> | |
92 The cross-spectral density matrix (CSD) is defined as the fourier transform of the ACF: | |
93 </p> | |
94 <div> | |
95 <IMG src="images/ngEqn4.gif" align="center" border="0"> | |
96 </div> | |
97 <p> | |
98 </p> | |
99 <p> | |
100 the CSD matrix is hermitian. | |
101 </p> | |
102 <p> | |
103 A multichannel white noise process is defined as the process whose ACF satisfies: | |
104 </p> | |
105 <div> | |
106 <IMG src="images/ngEqn5.gif" align="center" border="0"> | |
107 </div> | |
108 <p> | |
109 </p> | |
110 <p> | |
111 therefore the cross-spectral matrix has constant terms as a function of the frequency: | |
112 </p> | |
113 <div> | |
114 <IMG src="images/ngEqn6.gif" align="center" border="0"> | |
115 </div> | |
116 <p> | |
117 </p> | |
118 <p> | |
119 The individual processes are each white noise processes with power spectral density (PSD) given by | |
120 <IMG src="images/ngEqn7.gif" align="center" border="0">. | |
121 The cross-correlation between the processes is zero except at the same time instant | |
122 where they are correlated with a cross-correlation given by the off-diagonal elements of | |
123 <IMG src="images/ngEqn8.gif" align="center" border="0">. | |
124 A common assumption is | |
125 <IMG src="images/ngEqn9.gif" align="center" border="0"> | |
126 (identity matrix) that is equivalent to assume the white processes having unitary variance | |
127 and are completely uncorrelated being zero the off diagonal terms of the CSD matrix. | |
128 Further details can be found in [1 - 3]. | |
129 </p> | |
130 | |
131 <!-- ===== Multichannel Noise Generation Theory ====== --> | |
132 <h2><a name="NGTheory">Theoretical introduction to multichannel noise generation</a></h2> | |
133 <p> | |
134 The problem of multichannel noise generation with a given cross-spectrum | |
135 is formulated in frequency domain as follows: | |
136 </p> | |
137 <div> | |
138 <IMG src="images/ngEqn10.gif" align="center" border="0"> | |
139 </div> | |
140 <p> | |
141 </p> | |
142 <p> | |
143 <IMG src="images/ngEqn11.gif" align="center" border="0"> is a | |
144 multichannel digital filter that generating colored noise data with given cross-spectrum | |
145 <IMG src="images/ngEqn12.gif" align="center" border="0"> | |
146 starting from a set of mutually independent unitary variance with noise processes. | |
147 </p> | |
148 <p> | |
149 After some mathematics it can be showed that the desired multichannel coloring filter can be written as: | |
150 </p> | |
151 <div> | |
152 <IMG src="images/ngEqn13.gif" align="center" border="0"> | |
153 </div> | |
154 <p> | |
155 </p> | |
156 <p> | |
157 where <IMG src="images/ngEqn14.gif" align="center" border="0"> | |
158 and <IMG src="images/ngEqn15.gif" align="center" border="0"> | |
159 are the eigenvectors and eigenvalues matrices of | |
160 <IMG src="images/ngEqn12.gif" align="center" border="0"> | |
161 matrix. | |
162 </p> | |
163 | |
164 <!-- ===== Multichannel Noise Generator ====== --> | |
165 <h2><a name="ngMCH">Generation of multichannel noise with given cross-spectral density matrix</a></h2> | |
166 <p> | |
167 <tt>LTPDA Toolbox</tt> provides two methods (<a href="matlab:doc('matrix/mchNoisegenFilter')">mchNoisegenFilter</a> and | |
168 <a href="matlab:doc('matrix/mchNoisegen')">mchNoisegen</a>) of the class <tt>matrix</tt> for the production | |
169 of multichannel noise coloring filter and multichannel colored noise data series. | |
170 Noise data are colored Gaussian distributed time series with given cross-spectral density matrix. | |
171 Noise generation process is properly initialized in order to avoid starting transients on the data series. | |
172 Details on frequency domain identification of noisegen filters and on the noise generation process | |
173 can be found in ref. [1]. | |
174 <a href="matlab:doc('matrix/mchNoisegenFilter')">mchNoisegenFilter</a> needs a model for the one-sided | |
175 cross-spectral density or power spectral density if we are considering one-dimensional problems. | |
176 <a href="matlab:doc('matrix/mchNoisegen')">mchNoisegen</a> instead accepts as input the noise generating filter | |
177 produced by <a href="matlab:doc('matrix/mchNoisegenFilter')">mchNoisegenFilter</a>. | |
178 Details on accepted parameters can be found on the documentation pages of the two methods: | |
179 <ul> | |
180 <li> <a href="matlab:doc('matrix/mchNoisegenFilter')">mchNoisegenFilter</a> | |
181 <li> <a href="matlab:doc('matrix/mchNoisegen')">mchNoisegen</a> | |
182 </ul> | |
183 </p> | |
184 | |
185 | |
186 <!-- ===== Noisegen 1D ====== --> | |
187 <h2><a name="ng1D">Generation of one-dimensional noise with given spectral density</a></h2> | |
188 <p> | |
189 <tt>noisegen1D</tt> is a coloring tool allowing the generation of colored noise from withe noise with a given spectrum. | |
190 The function constructs a coloring filter through a fitting procedure to the model provided. | |
191 If no model is provided an error is prompted. The colored noise provided has one-sided psd | |
192 corresponding to the input model. | |
193 The function needs a model for the one-sided power spectral density of | |
194 the given process. Details on accepted parameters can be found on | |
195 the <a href="matlab:doc('ao/noisegen1D')">noisegen1D</a> documentation page. <br> | |
196 <ol> | |
197 <li> The square root of the model for the power spectral | |
198 density is fit in z-domain in order to determine a coloring | |
199 filter. | |
200 <li> Unstable poles are removed by an all-pass stabilization procedure. | |
201 <li> White input data are filtered with the identified filter in order to be colored. | |
202 </ol> | |
203 </p> | |
204 | |
205 | |
206 <!-- ===== Noisegen 2D ====== --> | |
207 <h2><a name="ng2D">Generation of two-dimensional noise with given cross-spectral density</a></h2> | |
208 <p> | |
209 <tt>noisegen2D</tt> is a nose coloring tool allowing the generation | |
210 two data series with the given cross-spectral density from two starting | |
211 white and mutually uncorrelated data series. | |
212 Coloring filters are constructed by a fitting procedure to a model | |
213 for the corss-spectral density matrix provided. | |
214 In order to work with <tt>noisegen2D</tt> you must provide | |
215 a model (frequency series analysis objects) for the cross-spectral density | |
216 matrix of the process. | |
217 Details on accepted parameters can be found on | |
218 the <a href="matlab:doc('ao/noisegen2D')">noisegen2D</a> documentation page. <br> | |
219 <ol> | |
220 <li> Coloring filters frequency response is calculated by the | |
221 eigendecomposition of the model cross-spectral matrix. | |
222 <li> Calculated responses are fit in z-domain in order to identify | |
223 corresponding autoregressive moving average filters. | |
224 <li> Input time-series are filtered. The filtering process corresponds to:<br> | |
225 o(1) = Filt11(a(1)) + Filt12(a(2))<br> | |
226 o(2) = Filt21(a(1)) + Filt22(a(2)) | |
227 </ol> | |
228 </p> | |
229 | |
230 | |
231 <h2>References</h2> | |
232 <p> | |
233 <ol> | |
234 <li> L. Ferraioli et. al., Calibrating spectral estimation for the LISA | |
235 Technology Package with multichannel synthetic noise generation, Phys. Rev. D 82, 042001 (2010). | |
236 <li> S. M. Kay, Modern Spectral Estimation, Prentice-Hall, 1999 </li> | |
237 <li> G. M. Jenkins and D. G. Watts, Spectral Analysis and Its Applications, Holden-Day 1968. </li> | |
238 </ol> | |
239 </p> |