Mercurial > hg > ltpda
comparison m-toolbox/html_help/help/ug/ng2D_content.html @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f0afece42f48 |
---|---|
1 | |
2 | |
3 <p> | |
4 <ul> | |
5 <li><a href="#description">Description</a></li> | |
6 <li><a href="#call">Call</a></li> | |
7 <li><a href="#inputs">Inputs</a></li> | |
8 <li><a href="#outputs">Outputs</a></li> | |
9 <li><a href="#algorithm">Algorithm</a></li> | |
10 <li><a href="#parameters">Parameters</a></li> | |
11 </ul> | |
12 </p> | |
13 | |
14 <h2><a name="description">Description</a></h2> | |
15 | |
16 <p> | |
17 noisegen2D generates colored noise from withe noise with a | |
18 given cross spectrum. The coloring filter is constructed by a fitting procedure to the | |
19 models provided. If no model is provided an error is | |
20 prompted. The cross-spectral matrix is assumed to be | |
21 frequency by frequency of the type: | |
22 </p> | |
23 <div class="fragment"><pre> | |
24 | |
25 / csd11(f) csd12(f) \ | |
26 CSD(f) = | | | |
27 \ csd21(f) csd22(f) / | |
28 | |
29 </pre></div> | |
30 <p> | |
31 Note: The function output colored noise data with one-sided | |
32 cross spectral density corresponding to the model provided. | |
33 </p> | |
34 | |
35 <h2><a name="call">Call</a></h2> | |
36 <div class="fragment"> | |
37 <pre> | |
38 b = noisegen2D(a, pl) | |
39 [b1,b2] = noisegen2D(a1, a2, pl) | |
40 [b1,b2,...,bn] = noisegen2D(a1,a2,...,an, pl); | |
41 </pre> | |
42 </div> | |
43 <p> | |
44 <ul> | |
45 <li> Note1: input AOs must come in couples. | |
46 <li> Note2: this method cannot be used as a modifier, the | |
47 call <tt> a.noisegen2D(pl) </tt> is forbidden. | |
48 </ul> | |
49 </p> | |
50 | |
51 | |
52 <h2><a name="inputs">Inputs</a></h2> | |
53 | |
54 <p> | |
55 <ul> | |
56 <li> a is at least a couple of time series analysis objects | |
57 <li> pl is a parameter list, see the list of accepted parameters below | |
58 </ul> | |
59 </p> | |
60 | |
61 | |
62 <h2><a name="outputs">Outputs</a></h2> | |
63 <p> | |
64 <ul> | |
65 <li> b are a couple of colored time-series AOs. The coloring | |
66 filters used are stored in the objects procinfo field under | |
67 the parameters: | |
68 <ul> | |
69 <li> b(1): 'Filt11' and 'Filt12' | |
70 <li> b(2): 'Filt21' and 'Filt22' | |
71 </ul> | |
72 </ul> | |
73 </p> | |
74 | |
75 | |
76 <h2><a name="algorithm">Algorithm</a></h2> | |
77 | |
78 <p> | |
79 <ol> | |
80 <li> Fit a set of partial fraction z-domain filters using | |
81 utils.math.psd2tf | |
82 <li> Convert to bank of mIIR filters | |
83 <li> Filter time-series in parallel | |
84 The filtering process is: <br/> | |
85 b(1) = Filt11(a(1)) + Filt12(a(2)) <br/> | |
86 b(2) = Filt21(a(1)) + Filt22(a(2)) | |
87 </ol> | |
88 </p> | |
89 | |
90 | |
91 | |
92 <h2><a name="parameters">Parameters</a></h2> | |
93 | |
94 <p> | |
95 <ul> | |
96 <li> 'csd11' - a frequency-series AO describing the model csd11 | |
97 <li> 'csd12' - a frequency-series AO describing the model csd12 | |
98 <li> 'csd21' - a frequency-series AO describing the model csd21 | |
99 <li> 'csd22' - a frequency-series AO describing the model csd22 | |
100 <li> 'MaxIter' - Maximum number of iterations in fit routine | |
101 [default: 30] | |
102 <li> 'PoleType' - Choose the pole type for fitting: | |
103 <ul> | |
104 <li> 1 - use real starting poles. | |
105 <li> 2 - generates complex conjugate poles of the | |
106 type a.*exp(theta*pi*j) | |
107 with theta = linspace(0,pi,N/2+1). | |
108 <li> 3 - generates complex conjugate poles of the type | |
109 a.*exp(theta*pi*j) | |
110 with theta = linspace(0,pi,N/2+2) [default]. | |
111 </ul> | |
112 </li> | |
113 <li> 'MinOrder' - Minimum order to fit with. [default: 2]. | |
114 <li> 'MaxOrder' - Maximum order to fit with. [default: 25] | |
115 <li> 'Weights' - choose weighting for the fit: [default: 2] | |
116 <ul> | |
117 <li> 1 - equal weights for each point. | |
118 <li> 2 - weight with 1/abs(model). | |
119 <li> 3 - weight with 1/abs(model).^2. | |
120 <li> 4 - weight with inverse of the square mean spread of the model. | |
121 </ul> | |
122 </li> | |
123 <li> 'Plot' - plot results of each fitting step. [default: false] | |
124 <li> 'Disp' - Display the progress of the fitting iteration. | |
125 [default: false] | |
126 <li> 'FitTolerance' - Log Residuals difference check if the minimum | |
127 of the logarithmic difference between data and | |
128 residuals is larger than a specified value. | |
129 ie. if the conditioning value is 2, the | |
130 function ensures that the difference between | |
131 data and residuals is at lest 2 order of | |
132 magnitude lower than data itsleves. [default: 2]. | |
133 <li> 'RMSEVar' - Root Mean Squared Error Variation - Check if the | |
134 variation of the RMS error is smaller than 10^(-b), | |
135 where b is the value given to the variable. This | |
136 option is useful for finding the minimum of Chi | |
137 squared. [default: 7]. | |
138 <li> 'UseSym' - Use symbolic calculation in eigendecomposition. [default: 0] | |
139 <ul> | |
140 <li> 0 - perform double-precision calculation in the | |
141 eigendecomposition procedure to identify 2dim | |
142 systems and for poles stabilization | |
143 <li> 1 - uses symbolic math toolbox variable precision | |
144 arithmetic in the eigendecomposition for 2dim | |
145 system identification and double-precison for | |
146 poles stabilization | |
147 <li> 2 - uses symbolic math toolbox variable precision | |
148 arithmetic in the eigendecomposition for 2dim | |
149 system identification and for poles | |
150 stabilization | |
151 </ul> | |
152 </li> | |
153 </ul> | |
154 </p> |