Mercurial > hg > ltpda
comparison m-toolbox/html_help/help/ug/sigproc_example_matrix_linfitsvd_ssm.html @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f0afece42f48 |
---|---|
1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" | |
2 "http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd"> | |
3 | |
4 <html lang="en"> | |
5 <head> | |
6 <meta name="generator" content= | |
7 "HTML Tidy for Mac OS X (vers 1st December 2004), see www.w3.org"> | |
8 <meta http-equiv="Content-Type" content= | |
9 "text/html; charset=us-ascii"> | |
10 | |
11 <title>Iterative linear parameter estimation for multichannel systems - ssm system model in time domain (LTPDA Toolbox)</title> | |
12 <link rel="stylesheet" href="docstyle.css" type="text/css"> | |
13 <meta name="generator" content="DocBook XSL Stylesheets V1.52.2"> | |
14 <meta name="description" content= | |
15 "Presents an overview of the features, system requirements, and starting the toolbox."> | |
16 </head> | |
17 | |
18 <body> | |
19 <a name="top_of_page" id="top_of_page"></a> | |
20 | |
21 <p style="font-size:1px;"> </p> | |
22 | |
23 <table class="nav" summary="Navigation aid" border="0" width= | |
24 "100%" cellpadding="0" cellspacing="0"> | |
25 <tr> | |
26 <td valign="baseline"><b>LTPDA Toolbox</b></td><td><a href="../helptoc.html">contents</a></td> | |
27 | |
28 <td valign="baseline" align="right"><a href= | |
29 "sigproc_example_matrix_linfitsvd.html"><img src="b_prev.gif" border="0" align= | |
30 "bottom" alt="Iterative linear parameter estimation for multichannel systems - symbolic system model in frequency domain"></a> <a href= | |
31 "zdomainfit.html"><img src="b_next.gif" border="0" align= | |
32 "bottom" alt="Z-Domain Fit"></a></td> | |
33 </tr> | |
34 </table> | |
35 | |
36 <h1 class="title"><a name="f3-12899" id="f3-12899"></a>Iterative linear parameter estimation for multichannel systems - ssm system model in time domain</h1> | |
37 <hr> | |
38 | |
39 <p> | |
40 | |
41 <p>Iterative linear parameter estimation for multichannel systems - ssm system model in time domain.</p> | |
42 | |
43 <h2>Contents</h2> | |
44 <div> | |
45 <ul> | |
46 <li><a href="#1">set plist for retriving</a></li> | |
47 <li><a href="#2">retrive data</a></li> | |
48 <li><a href="#3">Load input signal</a></li> | |
49 <li><a href="#4">load Whitening filters</a></li> | |
50 <li><a href="#5">System Model</a></li> | |
51 <li><a href="#6">Build input objects</a></li> | |
52 <li><a href="#7">Do Fit</a></li> | |
53 </ul> | |
54 </div> | |
55 | |
56 <h2>set plist for retriving<a name="1"></a></h2> | |
57 | |
58 <div class="fragment"><pre> | |
59 | |
60 pl = plist(<span class="string">'hostname'</span>, <span class="string">'lpsdas01.esac.esa.int'</span>, <span class="string">'database'</span>, <span class="string">'ex6'</span>); | |
61 </pre></div> | |
62 | |
63 <h2>retrive data<a name="2"></a></h2> | |
64 | |
65 <div class="fragment"><pre> | |
66 | |
67 o1_1 = ao(pl.pset(<span class="string">'binary'</span>, <span class="string">'yes'</span>, <span class="string">'id'</span>, 68)); | |
68 o12_1 = ao(pl.pset(<span class="string">'binary'</span>, <span class="string">'yes'</span>, <span class="string">'id'</span>, 69)); | |
69 | |
70 o1_2 = ao(pl.pset(<span class="string">'binary'</span>, <span class="string">'yes'</span>, <span class="string">'id'</span>, 74)); | |
71 o12_2 = ao(pl.pset(<span class="string">'binary'</span>, <span class="string">'yes'</span>, <span class="string">'id'</span>, 75)); | |
72 </pre></div> | |
73 | |
74 <h2>Load input signal<a name="3"></a></h2> | |
75 | |
76 <div class="fragment"><pre> | |
77 | |
78 is1 = matrix(pl.pset(<span class="string">'binary'</span>, <span class="string">'yes'</span>, <span class="string">'id'</span>, 78)); | |
79 is2 = matrix(pl.pset(<span class="string">'binary'</span>, <span class="string">'yes'</span>, <span class="string">'id'</span>, 79)); | |
80 | |
81 is1ao = is1.getObjectAtIndex(1); | |
82 is2ao = is2.getObjectAtIndex(2); | |
83 | |
84 <span class="comment">% set port names for fit</span> | |
85 is1names = {<span class="string">'INPUTGUIDANCE.ifo_x1'</span>}; | |
86 is2names = {<span class="string">'INPUTGUIDANCE.ifo_x12'</span>}; | |
87 | |
88 InputNames = {is1names,is2names}; | |
89 </pre></div> | |
90 | |
91 <h2>load Whitening filters<a name="4"></a></h2> | |
92 | |
93 <div class="fragment"><pre> | |
94 | |
95 <span class="comment">% Stoc filter</span> | |
96 fil1 = filterbank(pl.pset(<span class="string">'binary'</span>, <span class="string">'yes'</span>, <span class="string">'id'</span>, 76)); | |
97 fil2 = filterbank(pl.pset(<span class="string">'binary'</span>, <span class="string">'yes'</span>, <span class="string">'id'</span>, 77)); | |
98 fil3 = filterbank(miir()); | |
99 <span class="comment">% build matrix</span> | |
100 wf = matrix(fil1,fil3,fil3,fil2,plist(<span class="string">'shape'</span>,[2 2])); | |
101 </pre></div> | |
102 | |
103 <h2>System Model<a name="5"></a></h2> | |
104 | |
105 <div class="fragment"><pre> | |
106 | |
107 H = ssm(plist(<span class="string">'built-in'</span>,<span class="string">'LTP'</span>,<span class="keyword">...</span> | |
108 <span class="string">'Version'</span>,<span class="string">'Fitting'</span>,<span class="keyword">...</span> | |
109 <span class="string">'Continuous'</span>,true,<span class="keyword">...</span> | |
110 <span class="string">'dim'</span>,1,<span class="keyword">...</span> | |
111 <span class="string">'SYMBOLIC PARAMS'</span>,<span class="keyword">...</span> | |
112 {<span class="string">'FEEPS_XX'</span>,<span class="string">'CAPACT_TM2_XX'</span>,<span class="string">'IFO_X12X1'</span>,<span class="string">'EOM_TM1_STIFF_XX'</span>,<span class="string">'EOM_TM2_STIFF_XX'</span>,<span class="string">'DELAY_X1'</span>,<span class="string">'DELAY_X12'</span>})); | |
113 </pre></div> | |
114 | |
115 <h2>Build input objects<a name="6"></a></h2> | |
116 | |
117 <div class="fragment"><pre> | |
118 | |
119 <span class="comment">% empty ao</span> | |
120 | |
121 </pre></div> | |
122 | |
123 <div class="fragment"><pre> | |
124 | |
125 <span class="comment">%%% exp_3_1 %%%</span> | |
126 os1 = matrix(o1_1,o12_1,plist(<span class="string">'shape'</span>,[2 1])); | |
127 | |
128 <span class="comment">%%% exp_3_2 %%%</span> | |
129 os2 = matrix(o1_2,o12_2,plist(<span class="string">'shape'</span>,[2 1])); | |
130 | |
131 <span class="comment">%%% output names</span> | |
132 OutputNames = {{<span class="string">'IFO.x1'</span>,<span class="string">'IFO.x12'</span>},{<span class="string">'IFO.x1'</span>,<span class="string">'IFO.x12'</span>}}; | |
133 | |
134 <span class="comment">%%% Input signals</span> | |
135 iS = collection(is1ao,is2ao); | |
136 | |
137 <span class="comment">%%% Fit Params %%%</span> | |
138 usedparams = {<span class="string">'FEEPS_XX'</span>,<span class="string">'CAPACT_TM2_XX'</span>,<span class="string">'IFO_X12X1'</span>,<span class="string">'EOM_TM1_STIFF_XX'</span>,<span class="string">'EOM_TM2_STIFF_XX'</span>,<span class="string">'DELAY_X1'</span>,<span class="string">'DELAY_X12'</span>}; | |
139 | |
140 <span class="comment">%%% set bounded params</span> | |
141 bdparams = {<span class="string">'DELAY_X1'</span>,<span class="string">'DELAY_X12'</span>}; | |
142 bdvals = {[0.1 0.3],[0.1 0.3]}; | |
143 | |
144 <span class="comment">%%% set numerical derivative step</span> | |
145 diffStep = [0.01,0.01,1e-7,1e-7,1e-7,0.001,0.001]; | |
146 | |
147 </pre></div> | |
148 | |
149 <h2>Do Fit<a name="7"></a></h2> | |
150 | |
151 <div class="fragment"><pre> | |
152 | |
153 plfit = plist(<span class="keyword">...</span> | |
154 <span class="string">'FitParams'</span>,usedparams,<span class="keyword">...</span> | |
155 <span class="string">'BoundedParams'</span>,bdparams,<span class="keyword">...</span> | |
156 <span class="string">'BoundVals'</span>,bdvals,<span class="keyword">...</span> | |
157 <span class="string">'diffStep'</span>,diffStep,<span class="keyword">...</span> | |
158 <span class="string">'Model'</span>,H,<span class="keyword">...</span> | |
159 <span class="string">'Input'</span>,iS,<span class="keyword">...</span> | |
160 <span class="string">'InputNames'</span>,InputNames,<span class="keyword">...</span> | |
161 <span class="string">'OutputNames'</span>,OutputNames,<span class="keyword">...</span> | |
162 <span class="string">'WhiteningFilter'</span>,wf,<span class="keyword">...</span> | |
163 <span class="string">'tol'</span>,1,<span class="keyword">...</span> | |
164 <span class="string">'Nloops'</span>,5,<span class="keyword">...</span> | |
165 <span class="string">'Ncut'</span>,1e5); | |
166 | |
167 opars = linfitsvd(os1,os2,plfit); | |
168 | |
169 </pre></div> | |
170 | |
171 | |
172 </p> | |
173 | |
174 <br> | |
175 <br> | |
176 <table class="nav" summary="Navigation aid" border="0" width= | |
177 "100%" cellpadding="0" cellspacing="0"> | |
178 <tr valign="top"> | |
179 <td align="left" width="20"><a href="sigproc_example_matrix_linfitsvd.html"><img src= | |
180 "b_prev.gif" border="0" align="bottom" alt= | |
181 "Iterative linear parameter estimation for multichannel systems - symbolic system model in frequency domain"></a> </td> | |
182 | |
183 <td align="left">Iterative linear parameter estimation for multichannel systems - symbolic system model in frequency domain</td> | |
184 | |
185 <td> </td> | |
186 | |
187 <td align="right">Z-Domain Fit</td> | |
188 | |
189 <td align="right" width="20"><a href= | |
190 "zdomainfit.html"><img src="b_next.gif" border="0" align= | |
191 "bottom" alt="Z-Domain Fit"></a></td> | |
192 </tr> | |
193 </table><br> | |
194 | |
195 <p class="copy">©LTP Team</p> | |
196 </body> | |
197 </html> |