Mercurial > hg > ltpda
comparison m-toolbox/html_help/help/ug/sigproc_methods.html @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f0afece42f48 |
---|---|
1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" | |
2 "http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd"> | |
3 | |
4 <html lang="en"> | |
5 <head> | |
6 <meta name="generator" content= | |
7 "HTML Tidy for Mac OS X (vers 1st December 2004), see www.w3.org"> | |
8 <meta http-equiv="Content-Type" content= | |
9 "text/html; charset=us-ascii"> | |
10 | |
11 <title>Spectral Estimation Methods (LTPDA Toolbox)</title> | |
12 <link rel="stylesheet" href="docstyle.css" type="text/css"> | |
13 <meta name="generator" content="DocBook XSL Stylesheets V1.52.2"> | |
14 <meta name="description" content= | |
15 "Presents an overview of the features, system requirements, and starting the toolbox."> | |
16 </head> | |
17 | |
18 <body> | |
19 <a name="top_of_page" id="top_of_page"></a> | |
20 | |
21 <p style="font-size:1px;"> </p> | |
22 | |
23 <table class="nav" summary="Navigation aid" border="0" width= | |
24 "100%" cellpadding="0" cellspacing="0"> | |
25 <tr> | |
26 <td valign="baseline"><b>LTPDA Toolbox</b></td><td><a href="../helptoc.html">contents</a></td> | |
27 | |
28 <td valign="baseline" align="right"><a href= | |
29 "specwin_using.html"><img src="b_prev.gif" border="0" align= | |
30 "bottom" alt="Using spectral windows"></a> <a href= | |
31 "sigproc_psd.html"><img src="b_next.gif" border="0" align= | |
32 "bottom" alt="Power spectral density estimates"></a></td> | |
33 </tr> | |
34 </table> | |
35 | |
36 <h1 class="title"><a name="f3-12899" id="f3-12899"></a>Spectral Estimation Methods</h1> | |
37 <hr> | |
38 | |
39 <p> | |
40 <h2>Linear and Log-scale Methods</a></h2> | |
41 | |
42 <p> | |
43 The LTPDA Toolbox offers two kind of spectral estimators. The first ones are based on <tt>pwelch</tt> from MATLAB, which is an | |
44 implementation of Welch's averaged, modified periodogram method <a href="#references"> [1]</a>. More details about spectral | |
45 estimation techniques can be found <a href="sigproc_intro.html" >here</a>.</p> | |
46 | |
47 <p> | |
48 The following pages describe the different Welch-based spectral estimation <tt>ao</tt> methods | |
49 available in the LTPDA toolbox: | |
50 <ul> | |
51 <li><a href="sigproc_psd.html"> power spectral density estimates </a></li> | |
52 <li><a href="sigproc_cpsd.html"> cross-spectral density estimates </a></li> | |
53 <li><a href="sigproc_cohere.html"> cross-coherence estimates </a></li> | |
54 <li><a href="sigproc_tfe.html"> transfer function estimates </a></li> | |
55 </ul> | |
56 </p> | |
57 | |
58 <p> | |
59 As an alternative, the LTPDA toolbox makes available the same set of estimators, based on an | |
60 implementation of the LPSD algorithm <a href="#references"> [2]</a>). | |
61 </p> | |
62 <p> | |
63 The following pages describe the different LPSD-based spectral estimation <tt>ao</tt> methods | |
64 available in the LTPDA toolbox: | |
65 <ul> | |
66 <li><a href="sigproc_lpsd.html"> log-scale power spectral density estimates </a></li> | |
67 <li><a href="sigproc_lcpsd.html"> log-scale cross-spectral density estimates </a></li> | |
68 <li><a href="sigproc_lcohere.html"> log-scale cross-coherence estimates </a></li> | |
69 <li><a href="sigproc_ltfe.html"> log-scale transfer function estimates</a></li> | |
70 </ul> | |
71 </p> | |
72 | |
73 <p> More detailed help on spectral estimation can also be found in the help associated with | |
74 the <a href="matlab:doc('signal')" >Signal Processing Toolbox</a>. | |
75 </p> | |
76 | |
77 <h2>Computing the sample variance</h2> | |
78 <p> | |
79 The spectral estimators previously described usually return the average of the spectral estimator applied | |
80 to different segments. This is a standard technique used in spectral analysis to reduce the variance of the | |
81 estimator. | |
82 </p> | |
83 <p> | |
84 When using one of the previous methods in the LTPDA Toolbox, the value of this average over different segments | |
85 is stored in the <tt>ao.y</tt> field of the output analysis object, but the user obtains also information about | |
86 the spectral estimator variance in the <tt>ao.dy</tt> field. | |
87 </p> | |
88 <p> | |
89 The methods listed above store in the <tt>ao.dy</tt> field the <b>standard deviation of the mean</b>, defined as | |
90 </p> | |
91 <div align="center"> | |
92 <img src="images/mean_variance.png" > | |
93 </div> | |
94 <br> | |
95 <p> | |
96 For more details on how the variance of the mean is computed, please refer to the the help page of each method. | |
97 </p> | |
98 <p> | |
99 <table cellspacing="0" class="note" summary="Note" cellpadding="5" border="1"> | |
100 <tr width="90%"> | |
101 <td> | |
102 Note that when we only have one segment we can not evaluate the variance. This will happen in | |
103 <ul> | |
104 <li>linear estimators: when the number of averages is equal to one.</li> | |
105 <li>log-scale estimators: in the lowest frequency bins.</li> | |
106 </ul> | |
107 </td> | |
108 </tr> | |
109 </table> | |
110 </p> | |
111 <br> | |
112 <p> | |
113 The following example compares the sample variance computed by <tt>ao/psd</tt> with two different segment length. | |
114 </p> | |
115 <div class="fragment"><pre><br> | |
116 <span class="comment">% create white noise AO </span> | |
117 pl = plist(<span class="string">'nsecs'</span>, 500, <span class="string">'fs'</span>, 5, <span class="string">'tsfcn'</span>, <span class="string">'randn(size(t))'</span>); | |
118 a = ao(pl); | |
119 | |
120 <span class="comment">% compute psd with different Nfft</span> | |
121 b1 = psd(a, plist(<span class="string">'Nfft'</span>, 500)); | |
122 b1.setName(<span class="string">'Nfft = 500'</span>); | |
123 b2 = psd(a, plist(<span class="string">'Nfft'</span>, 200)); | |
124 b2.setName(<span class="string">'Nfft = 200'</span>); | |
125 | |
126 <span class="comment">% plot with errorbars</span> | |
127 iplot(b1,b2,plist(<span class="string">'YErrU'</span>,{b1.dy,b2.dy})) | |
128 </pre></div> | |
129 <p> | |
130 <div align="center"> | |
131 <p> | |
132 </p> | |
133 <IMG src="images/spectral_error.png" align="center" border="0"> | |
134 </div> | |
135 </p> | |
136 <br> | |
137 <h2><a name="references">References</a></h2> | |
138 | |
139 <ol> | |
140 <li> P.D. Welch, The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, | |
141 Modified Periodograms, <i>IEEE Trans. on Audio and Electroacoustics</i>, Vol. 15, No. 2 (1967), pp. 70 - 73</a></li> | |
142 <li> M. Troebs, G. Heinzel, Improved spectrum estimation from digitized time series | |
143 on a logarithmic frequency axis, <a href="http://dx.doi.org/10.1016/j.measurement.2005.10.010" ><i>Measurement</i>, Vol. 39 (2006), pp. 120 - 129</a>. See also the <a href="http://dx.doi.org/10.1016/j.measurement.2008.04.004" >Corrigendum</a>. </li> | |
144 </ol> | |
145 | |
146 </p> | |
147 | |
148 <br> | |
149 <br> | |
150 <table class="nav" summary="Navigation aid" border="0" width= | |
151 "100%" cellpadding="0" cellspacing="0"> | |
152 <tr valign="top"> | |
153 <td align="left" width="20"><a href="specwin_using.html"><img src= | |
154 "b_prev.gif" border="0" align="bottom" alt= | |
155 "Using spectral windows"></a> </td> | |
156 | |
157 <td align="left">Using spectral windows</td> | |
158 | |
159 <td> </td> | |
160 | |
161 <td align="right">Power spectral density estimates</td> | |
162 | |
163 <td align="right" width="20"><a href= | |
164 "sigproc_psd.html"><img src="b_next.gif" border="0" align= | |
165 "bottom" alt="Power spectral density estimates"></a></td> | |
166 </tr> | |
167 </table><br> | |
168 | |
169 <p class="copy">©LTP Team</p> | |
170 </body> | |
171 </html> |