Mercurial > hg > ltpda
comparison m-toolbox/html_help/help/ug/sigproc_methods_content.html @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f0afece42f48 |
---|---|
1 <h2>Linear and Log-scale Methods</a></h2> | |
2 | |
3 <p> | |
4 The LTPDA Toolbox offers two kind of spectral estimators. The first ones are based on <tt>pwelch</tt> from MATLAB, which is an | |
5 implementation of Welch's averaged, modified periodogram method <a href="#references"> [1]</a>. More details about spectral | |
6 estimation techniques can be found <a href="sigproc_intro.html" >here</a>.</p> | |
7 | |
8 <p> | |
9 The following pages describe the different Welch-based spectral estimation <tt>ao</tt> methods | |
10 available in the LTPDA toolbox: | |
11 <ul> | |
12 <li><a href="sigproc_psd.html"> power spectral density estimates </a></li> | |
13 <li><a href="sigproc_cpsd.html"> cross-spectral density estimates </a></li> | |
14 <li><a href="sigproc_cohere.html"> cross-coherence estimates </a></li> | |
15 <li><a href="sigproc_tfe.html"> transfer function estimates </a></li> | |
16 </ul> | |
17 </p> | |
18 | |
19 <p> | |
20 As an alternative, the LTPDA toolbox makes available the same set of estimators, based on an | |
21 implementation of the LPSD algorithm <a href="#references"> [2]</a>). | |
22 </p> | |
23 <p> | |
24 The following pages describe the different LPSD-based spectral estimation <tt>ao</tt> methods | |
25 available in the LTPDA toolbox: | |
26 <ul> | |
27 <li><a href="sigproc_lpsd.html"> log-scale power spectral density estimates </a></li> | |
28 <li><a href="sigproc_lcpsd.html"> log-scale cross-spectral density estimates </a></li> | |
29 <li><a href="sigproc_lcohere.html"> log-scale cross-coherence estimates </a></li> | |
30 <li><a href="sigproc_ltfe.html"> log-scale transfer function estimates</a></li> | |
31 </ul> | |
32 </p> | |
33 | |
34 <p> More detailed help on spectral estimation can also be found in the help associated with | |
35 the <a href="matlab:doc('signal')" >Signal Processing Toolbox</a>. | |
36 </p> | |
37 | |
38 <h2>Computing the sample variance</h2> | |
39 <p> | |
40 The spectral estimators previously described usually return the average of the spectral estimator applied | |
41 to different segments. This is a standard technique used in spectral analysis to reduce the variance of the | |
42 estimator. | |
43 </p> | |
44 <p> | |
45 When using one of the previous methods in the LTPDA Toolbox, the value of this average over different segments | |
46 is stored in the <tt>ao.y</tt> field of the output analysis object, but the user obtains also information about | |
47 the spectral estimator variance in the <tt>ao.dy</tt> field. | |
48 </p> | |
49 <p> | |
50 The methods listed above store in the <tt>ao.dy</tt> field the <b>standard deviation of the mean</b>, defined as | |
51 </p> | |
52 <div align="center"> | |
53 <img src="images/mean_variance.png" > | |
54 </div> | |
55 <br> | |
56 <p> | |
57 For more details on how the variance of the mean is computed, please refer to the the help page of each method. | |
58 </p> | |
59 <p> | |
60 <table cellspacing="0" class="note" summary="Note" cellpadding="5" border="1"> | |
61 <tr width="90%"> | |
62 <td> | |
63 Note that when we only have one segment we can not evaluate the variance. This will happen in | |
64 <ul> | |
65 <li>linear estimators: when the number of averages is equal to one.</li> | |
66 <li>log-scale estimators: in the lowest frequency bins.</li> | |
67 </ul> | |
68 </td> | |
69 </tr> | |
70 </table> | |
71 </p> | |
72 <br> | |
73 <p> | |
74 The following example compares the sample variance computed by <tt>ao/psd</tt> with two different segment length. | |
75 </p> | |
76 <div class="fragment"><pre><br> | |
77 <span class="comment">% create white noise AO </span> | |
78 pl = plist(<span class="string">'nsecs'</span>, 500, <span class="string">'fs'</span>, 5, <span class="string">'tsfcn'</span>, <span class="string">'randn(size(t))'</span>); | |
79 a = ao(pl); | |
80 | |
81 <span class="comment">% compute psd with different Nfft</span> | |
82 b1 = psd(a, plist(<span class="string">'Nfft'</span>, 500)); | |
83 b1.setName(<span class="string">'Nfft = 500'</span>); | |
84 b2 = psd(a, plist(<span class="string">'Nfft'</span>, 200)); | |
85 b2.setName(<span class="string">'Nfft = 200'</span>); | |
86 | |
87 <span class="comment">% plot with errorbars</span> | |
88 iplot(b1,b2,plist(<span class="string">'YErrU'</span>,{b1.dy,b2.dy})) | |
89 </pre></div> | |
90 <p> | |
91 <div align="center"> | |
92 <p> | |
93 </p> | |
94 <IMG src="images/spectral_error.png" align="center" border="0"> | |
95 </div> | |
96 </p> | |
97 <br> | |
98 <h2><a name="references">References</a></h2> | |
99 | |
100 <ol> | |
101 <li> P.D. Welch, The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, | |
102 Modified Periodograms, <i>IEEE Trans. on Audio and Electroacoustics</i>, Vol. 15, No. 2 (1967), pp. 70 - 73</a></li> | |
103 <li> M. Troebs, G. Heinzel, Improved spectrum estimation from digitized time series | |
104 on a logarithmic frequency axis, <a href="http://dx.doi.org/10.1016/j.measurement.2005.10.010" ><i>Measurement</i>, Vol. 39 (2006), pp. 120 - 129</a>. See also the <a href="http://dx.doi.org/10.1016/j.measurement.2008.04.004" >Corrigendum</a>. </li> | |
105 </ol> |