Mercurial > hg > ltpda
comparison m-toolbox/html_help/help/ug/whiten2D_content.html @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f0afece42f48 |
---|---|
1 <!-- | |
2 <p> | |
3 <ul> | |
4 <li><a href="#description">Description</a></li> | |
5 <li><a href="#call">Call</a></li> | |
6 <li><a href="#inputs">Inputs</a></li> | |
7 <li><a href="#outputs">Outputs</a></li> | |
8 <li><a href="#algorithm">Algorithm</a></li> | |
9 <li><a href="#parameters">Parameters</a></li> | |
10 </ul> | |
11 </p> | |
12 --> | |
13 <h2><a name="description">Description</a></h2> | |
14 | |
15 <p> | |
16 whiten2D whitens cross-correlated time-series. Whitening filters are constructed | |
17 by a fitting procedure to the corss-spectrum models provided. | |
18 Note: The function assumes that the input model corresponds | |
19 to the one-sided csd of the data to be whitened. | |
20 </p> | |
21 | |
22 <h2><a name="call">Call</a></h2> | |
23 <div class="fragment"> | |
24 <pre> | |
25 b = whiten2D(a, pl) | |
26 [b1,b2] = whiten2D(a1, a2, pl) | |
27 [b1,b2,...,bn] = whiten2D(a1,a2,...,an, pl); | |
28 </pre> | |
29 </div> | |
30 <p> | |
31 <ul> | |
32 <li> Note1: input AOs must come in couples. | |
33 <li> Note2: this method cannot be used as a modifier, the | |
34 call <tt> a.whiten2D(pl) </tt> is forbidden. | |
35 </ul> | |
36 </p> | |
37 | |
38 | |
39 <h2><a name="inputs">Inputs</a></h2> | |
40 | |
41 <p> | |
42 <ul> | |
43 <li> a is at least a couple of time series analysis objects | |
44 <li> pl is a parameter list, see the list of accepted parameters below | |
45 </ul> | |
46 </p> | |
47 | |
48 | |
49 <h2><a name="outputs">Outputs</a></h2> | |
50 <p> | |
51 <ul> | |
52 <li> b is at least a couple of "whitened" time-series AOs. The whitening | |
53 filters used are stored in the objects procinfo field as. | |
54 <ul> | |
55 <li> b(1): 'Filt11' and 'Filt12' | |
56 <li> b(2): 'Filt21' and 'Filt22' | |
57 </ul> | |
58 </ul> | |
59 </p> | |
60 | |
61 | |
62 <h2><a name="algorithm">Algorithm</a></h2> | |
63 | |
64 <p> | |
65 <ol> | |
66 <li> Fit a set of partial fraction z-domain filters using | |
67 utils.math.psd2wf | |
68 <li> Convert to bank of mIIR filters | |
69 <li> Filter time-series in parallel | |
70 The filtering process is: <br/> | |
71 b(1) = Filt11(a(1)) + Filt12(a(2)) <br/> | |
72 b(2) = Filt21(a(1)) + Filt22(a(2)) | |
73 </ol> | |
74 </p> | |
75 | |
76 | |
77 | |
78 <h2><a name="parameters">Parameters</a></h2> | |
79 | |
80 <p> | |
81 <ul> | |
82 <li> 'csd11' - a frequency-series AO describing the model csd11 | |
83 <li> 'csd12' - a frequency-series AO describing the model csd12 | |
84 <li> 'csd21' - a frequency-series AO describing the model csd21 | |
85 <li> 'csd22' - a frequency-series AO describing the model csd22 | |
86 <li> 'MaxIter' - Maximum number of iterations in fit routine | |
87 [default: 30] | |
88 <li> 'PoleType' - Choose the pole type for fitting: | |
89 <ul> | |
90 <li> 1 - use real starting poles. | |
91 <li> 2 - generates complex conjugate poles of the | |
92 type a.*exp(theta*pi*j) | |
93 with theta = linspace(0,pi,N/2+1). | |
94 <li> 3 - generates complex conjugate poles of the type | |
95 a.*exp(theta*pi*j) | |
96 with theta = linspace(0,pi,N/2+2) [default]. | |
97 </ul> | |
98 </li> | |
99 <li> 'MinOrder' - Minimum order to fit with. [default: 2]. | |
100 <li> 'MaxOrder' - Maximum order to fit with. [default: 25] | |
101 <li> 'Weights' - choose weighting for the fit: [default: 2] | |
102 <ul> | |
103 <li> 1 - equal weights for each point. | |
104 <li> 2 - weight with 1/abs(model). | |
105 <li> 3 - weight with 1/abs(model).^2. | |
106 <li> 4 - weight with inverse of the square mean spread of the model. | |
107 </ul> | |
108 </li> | |
109 <li> 'Plot' - plot results of each fitting step. [default: false] | |
110 <li> 'Disp' - Display the progress of the fitting iteration. | |
111 [default: false] | |
112 <li> 'FitTolerance' - Log Residuals difference check if the minimum | |
113 of the logarithmic difference between data and | |
114 residuals is larger than a specified value. | |
115 ie. if the conditioning value is 2, the | |
116 function ensures that the difference between | |
117 data and residuals is at lest 2 order of | |
118 magnitude lower than data itsleves. [default: 2]. | |
119 <li> 'RMSEVar' - Root Mean Squared Error Variation - Check if the | |
120 variation of the RMS error is smaller than 10^(-b), | |
121 where b is the value given to the variable. This | |
122 option is useful for finding the minimum of Chi | |
123 squared. [default: 7]. | |
124 <li> 'UseSym' - Use symbolic calculation in eigendecomposition. [default: 0] | |
125 <ul> | |
126 <li> 0 - perform double-precision calculation in the | |
127 eigendecomposition procedure to identify 2dim | |
128 systems and for poles stabilization | |
129 <li> 1 - uses symbolic math toolbox variable precision | |
130 arithmetic in the eigendecomposition for 2dim | |
131 system identification and double-precison for | |
132 poles stabilization | |
133 <li> 2 - uses symbolic math toolbox variable precision | |
134 arithmetic in the eigendecomposition for 2dim | |
135 system identification and for poles | |
136 stabilization | |
137 </ul> | |
138 </li> | |
139 </ul> | |
140 </p> | |
141 | |
142 | |
143 | |
144 | |
145 | |
146 | |
147 | |
148 | |
149 | |
150 | |
151 | |
152 | |
153 | |
154 |