Mercurial > hg > ltpda
comparison m-toolbox/html_help/help/ug/zdomainfit.html @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f0afece42f48 |
---|---|
1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" | |
2 "http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd"> | |
3 | |
4 <html lang="en"> | |
5 <head> | |
6 <meta name="generator" content= | |
7 "HTML Tidy for Mac OS X (vers 1st December 2004), see www.w3.org"> | |
8 <meta http-equiv="Content-Type" content= | |
9 "text/html; charset=us-ascii"> | |
10 | |
11 <title>Z-Domain Fit (LTPDA Toolbox)</title> | |
12 <link rel="stylesheet" href="docstyle.css" type="text/css"> | |
13 <meta name="generator" content="DocBook XSL Stylesheets V1.52.2"> | |
14 <meta name="description" content= | |
15 "Presents an overview of the features, system requirements, and starting the toolbox."> | |
16 </head> | |
17 | |
18 <body> | |
19 <a name="top_of_page" id="top_of_page"></a> | |
20 | |
21 <p style="font-size:1px;"> </p> | |
22 | |
23 <table class="nav" summary="Navigation aid" border="0" width= | |
24 "100%" cellpadding="0" cellspacing="0"> | |
25 <tr> | |
26 <td valign="baseline"><b>LTPDA Toolbox</b></td><td><a href="../helptoc.html">contents</a></td> | |
27 | |
28 <td valign="baseline" align="right"><a href= | |
29 "sigproc_example_matrix_linfitsvd_ssm.html"><img src="b_prev.gif" border="0" align= | |
30 "bottom" alt="Iterative linear parameter estimation for multichannel systems - ssm system model in time domain"></a> <a href= | |
31 "sdomainfit.html"><img src="b_next.gif" border="0" align= | |
32 "bottom" alt="S-Domain Fit"></a></td> | |
33 </tr> | |
34 </table> | |
35 | |
36 <h1 class="title"><a name="f3-12899" id="f3-12899"></a>Z-Domain Fit</h1> | |
37 <hr> | |
38 | |
39 <p> | |
40 | |
41 <!-- ================================================== --> | |
42 <!-- BEGIN CONTENT FILE --> | |
43 <!-- ================================================== --> | |
44 <!-- ===== link box: Begin ===== --> | |
45 <p> | |
46 <table border="1" width="80%"> | |
47 <tr> | |
48 <td> | |
49 <table border="0" cellpadding="5" class="categorylist" width="100%"> | |
50 <colgroup> | |
51 <col width="37%"/> | |
52 <col width="63%"/> | |
53 </colgroup> | |
54 <tbody> | |
55 <tr valign="top"> | |
56 <td> | |
57 <a href="#description">Description</a> | |
58 </td> | |
59 <td>Z-domain system identification in LTPDA.</td> | |
60 </tr> | |
61 <tr valign="top"> | |
62 <td> | |
63 <a href="#algorithm">Algorithm</a> | |
64 </td> | |
65 <td>Fit Algorithm.</td> | |
66 </tr> | |
67 <tr valign="top"> | |
68 <td> | |
69 <a href="#examples">Examples</a> | |
70 </td> | |
71 <td>Usage example of z-domain system identification tool.</td> | |
72 </tr> | |
73 <tr valign="top"> | |
74 <td> | |
75 <a href="#references">References</a> | |
76 </td> | |
77 <td>Bibliographic references.</td> | |
78 </tr> | |
79 </tbody> | |
80 </table> | |
81 </td> | |
82 </tr> | |
83 </table> | |
84 </p> | |
85 <!-- ===== link box: End ====== --> | |
86 | |
87 | |
88 | |
89 <h2><a name="description">Z-domain system identification in LTPDA</a></h2> | |
90 <p> | |
91 System identification in z-domain is performed with the function | |
92 <a href="matlab:doc('ao/zDomainFit')">zDomainFit</a>. | |
93 It is based on a modeified version of the vector fitting algorithm that was | |
94 adapted to fit in z-domain. Details on the core agorithm can be found in [1 - 3]. | |
95 </p> | |
96 <p> | |
97 If you provide more than one AO as input, they will be fitted | |
98 together with a common set of poles. | |
99 Only frequency domain (<a href="matlab:doc('fsdata')">fsdata</a>) data can be | |
100 fitted. Each non fsdata object is ignored. Input | |
101 objects must have the same number of elements. | |
102 </p> | |
103 | |
104 | |
105 <h2><a name="algorithm">Fit algorithm</a></h2> | |
106 | |
107 <p> | |
108 The function performs a fitting loop to automatically identify model | |
109 order and parameters in z-domain. Output is a z-domain model expanded | |
110 in partial fractions: | |
111 </p> | |
112 <p> | |
113 <div> | |
114 <IMG src="images/zdomainfit_1.gif" border="0"> | |
115 </div> | |
116 </p> | |
117 <p> | |
118 Each element of the partial fraction expansion can be seen as a | |
119 <a href="sigproc_iir.html">miir</a> filter. Therefore the complete expansion | |
120 is simply a parallel <a href="sigproc_filterbanks.html">filterbank</a> of | |
121 <a href="sigproc_iir.html">miir</a> filters. | |
122 Since the function can fit more than one input analysis object at a time | |
123 with a common set of poles, output filterbank are embedded in a | |
124 <a href="class_desc_matrix.html">matrix</a> (note that this characteristic | |
125 will be probably changed becausse of the introduction of the | |
126 <a href="class_desc_collection.html">collection</a> class). | |
127 </p> | |
128 <p> | |
129 Identification loop stops when the stop condition is reached. | |
130 Stop criterion is based on three different approaches: | |
131 <ol> | |
132 <li> Mean Squared Error and variation <br> | |
133 Check if the normalized mean squared error is lower than the value specified in | |
134 <tt>FITTOL</tt> and if the relative variation of the mean squared error is lower | |
135 than the value specified in <tt>MSEVARTOL</tt>. | |
136 E.g. <tt>FITTOL = 1e-3</tt>, <tt>MSEVARTOL = 1e-2</tt> search for a fit with | |
137 normalized meam square error lower than <tt>1e-3</tt> and <tt>MSE</tt> relative | |
138 variation lower than <tt>1e-2</tt>. | |
139 </li> | |
140 <li> Log residuals difference and root mean squared error | |
141 <ul> | |
142 <li> Log Residuals difference <br> | |
143 Check if the minimum of the logarithmic difference between data and | |
144 residuals is larger than a specified value. ie. if the conditioning | |
145 value is <tt>2</tt>, the function ensures that the difference between data and | |
146 residuals is at lest two order of magnitude lower than data itsleves. | |
147 <li> Root Mean Squared Error <br> | |
148 Check that the variation of the root mean squared error is lower than | |
149 <tt>10^(-1*value)</tt>. | |
150 </ul> | |
151 </li> | |
152 <li> Residuals spectral flatness and root mean squared error | |
153 <ul> | |
154 <li> Residuals Spectral Flatness <br> | |
155 In case of a fit on noisy data, the residuals from a good fit are | |
156 expected to be as much as possible similar to a white noise. This | |
157 property can be used to test the accuracy of a fit procedure. In | |
158 particular it can be tested that the spectral flatness coefficient of | |
159 the residuals is larger than a certain qiantity sf such that <tt>0 < sf < 1</tt>. | |
160 <li> Root Mean Squared Error <br> | |
161 Check that the variation of the root mean squared error is lower than | |
162 <tt>10^(-1*value)</tt>. | |
163 </ul> | |
164 </li> | |
165 </ol> | |
166 Fitting loop stops when the two stopping conditions are satisfied, in both cases. | |
167 </p> | |
168 <p> | |
169 The function can also perform a single loop without taking care of | |
170 the stop conditions. This happens when <span class="string">'AUTOSEARCH'</span> parameter is | |
171 set to <span class="string">'OFF'</span>. | |
172 </p> | |
173 | |
174 | |
175 | |
176 <h2><a name="examples">Usage example of z-domain system identification tool</a></h2> | |
177 <p> | |
178 In this example we fit a given frequency response to get a stable <tt>miir</tt> filter. | |
179 For the meaning of any parameter please refer to | |
180 <a href="matlab:doc('ao')">ao</a> and | |
181 <a href="matlab:doc('ao/zDomainFit')">zDomainFit</a> | |
182 documentation pages. | |
183 </p> | |
184 | |
185 <div class="fragment"><pre> | |
186 pl = plist(... | |
187 <span class="string">'fsfcn'</span>, <span class="string">'(1e-3./(2.*pi.*1i.*f).^2 + 1e3./(0.001+2.*pi.*1i.*f) + 1e5.*(2.*pi.*1i.*f).^2).*1e-10'</span>,... | |
188 <span class="string">'f1'</span>, 1e-6,... | |
189 <span class="string">'f2'</span>, 5,... | |
190 <span class="string">'nf'</span>, 100); | |
191 | |
192 a = ao(pl); | |
193 a.setName; | |
194 | |
195 <span class="comment">% Fit parameter list</span> | |
196 pl_fit = plist(<span class="string">'FS'</span>,10,... | |
197 <span class="string">'AutoSearch'</span>,<span class="string">'on'</span>,... | |
198 <span class="string">'StartPolesOpt'</span>,<span class="string">'clog'</span>,... | |
199 <span class="string">'maxiter'</span>,50,... | |
200 <span class="string">'minorder'</span>,15,... | |
201 <span class="string">'maxorder'</span>,30,... | |
202 <span class="string">'weightparam'</span>,<span class="string">'abs'</span>,... | |
203 <span class="string">'CONDTYPE'</span>,<span class="string">'MSE'</span>,... | |
204 <span class="string">'FITTOL'</span>,1e-2,... | |
205 <span class="string">'MSEVARTOL'</span>,1e-1,... | |
206 <span class="string">'Plot'</span>,<span class="string">'on'</span>,... | |
207 <span class="string">'ForceStability'</span>,<span class="string">'on'</span>); | |
208 | |
209 <span class="comment">% Do fit</span> | |
210 mod = zDomainFit(a, pl_fit); | |
211 </pre></div> | |
212 | |
213 <p> | |
214 <tt>mod</tt> is a <tt>matrix</tt> object containing a <tt>filterbank</tt> object. | |
215 </p> | |
216 | |
217 <div class="fragment"><pre> | |
218 >> mod | |
219 ---- matrix 1 ---- | |
220 name: fit(a) | |
221 size: 1x1 | |
222 01: filterbank | filterbank(fit(a)(fs=10.00, ntaps=2.00, a=[-1.19e+005 0], b=[1 0.0223]), fit(a)(fs=10.00, ntaps=2.00, a=[1.67e+005 0], b=[1 0.137]), fit(a)(fs=10.00, ntaps=2.00, a=[-5.41e+004 0], b=[1 0.348]), fit(a)(fs=10.00, ntaps=2.00, a=[1.15e+004 0], b=[1 0.603]), fit(a)(fs=10.00, ntaps=2.00, a=[-1.69e+005 0], b=[1 0.639]), fit(a)(fs=10.00, ntaps=2.00, a=[1.6e+005 0], b=[1 0.64]), fit(a)(fs=10.00, ntaps=2.00, a=[9.99e-009 0], b=[1 -1]), fit(a)(fs=10.00, ntaps=2.00, a=[-4.95e-010 0], b=[1 1]), fit(a)(fs=10.00, ntaps=2.00, a=[9.4e+003-i*3.7e+003 0], b=[1 -0.0528-i*0.0424]), fit(a)(fs=10.00, ntaps=2.00, a=[9.4e+003+i*3.7e+003 0], b=[1 -0.0528+i*0.0424]), fit(a)(fs=10.00, ntaps=2.00, a=[1.66e+003-i*1.45e+004 0], b=[1 0.0233-i*0.112]), fit(a)(fs=10.00, ntaps=2.00, a=[1.66e+003+i*1.45e+004 0], b=[1 0.0233+i*0.112]), fit(a)(fs=10.00, ntaps=2.00, a=[-1.67e+004+i*432 0], b=[1 0.171-i*0.14]), fit(a)(fs=10.00, ntaps=2.00, a=[-1.67e+004-i*432 0], b=[1 0.171+i*0.14]), fit(a)(fs=10.00, ntaps=2.00, a=[7.61e+003+i*7.36e+003 0], b=[1 0.378-i*0.112]), fit(a)(fs=10.00, ntaps=2.00, a=[7.61e+003-i*7.36e+003 0], b=[1 0.378+i*0.112]), fit(a)(fs=10.00, ntaps=2.00, a=[3.67e-015-i*4.61e-006 0], b=[1 -1-i*1.08e-010]), fit(a)(fs=10.00, ntaps=2.00, a=[3.67e-015+i*4.61e-006 0], b=[1 -1+i*1.08e-010])) | |
223 description: | |
224 UUID: 9274455a-68e8-4bf1-b1ad-db81551f3cd6 | |
225 ------------------ | |
226 </pre></div> | |
227 | |
228 <p> | |
229 The <tt>filterbank</tt> object contains a parallel bank of 18 filters. | |
230 </p> | |
231 | |
232 <div class="fragment"><pre> | |
233 >> mod.objs | |
234 ---- filterbank 1 ---- | |
235 name: fit(a) | |
236 type: parallel | |
237 01: fit(a)(fs=10.00, ntaps=2.00, a=[-1.19e+005 0], b=[1 0.0223]) | |
238 02: fit(a)(fs=10.00, ntaps=2.00, a=[1.67e+005 0], b=[1 0.137]) | |
239 03: fit(a)(fs=10.00, ntaps=2.00, a=[-5.41e+004 0], b=[1 0.348]) | |
240 04: fit(a)(fs=10.00, ntaps=2.00, a=[1.15e+004 0], b=[1 0.603]) | |
241 05: fit(a)(fs=10.00, ntaps=2.00, a=[-1.69e+005 0], b=[1 0.639]) | |
242 06: fit(a)(fs=10.00, ntaps=2.00, a=[1.6e+005 0], b=[1 0.64]) | |
243 07: fit(a)(fs=10.00, ntaps=2.00, a=[9.99e-009 0], b=[1 -1]) | |
244 08: fit(a)(fs=10.00, ntaps=2.00, a=[-4.95e-010 0], b=[1 1]) | |
245 09: fit(a)(fs=10.00, ntaps=2.00, a=[9.4e+003-i*3.7e+003 0], b=[1 -0.0528-i*0.0424]) | |
246 10: fit(a)(fs=10.00, ntaps=2.00, a=[9.4e+003+i*3.7e+003 0], b=[1 -0.0528+i*0.0424]) | |
247 11: fit(a)(fs=10.00, ntaps=2.00, a=[1.66e+003-i*1.45e+004 0], b=[1 0.0233-i*0.112]) | |
248 12: fit(a)(fs=10.00, ntaps=2.00, a=[1.66e+003+i*1.45e+004 0], b=[1 0.0233+i*0.112]) | |
249 13: fit(a)(fs=10.00, ntaps=2.00, a=[-1.67e+004+i*432 0], b=[1 0.171-i*0.14]) | |
250 14: fit(a)(fs=10.00, ntaps=2.00, a=[-1.67e+004-i*432 0], b=[1 0.171+i*0.14]) | |
251 15: fit(a)(fs=10.00, ntaps=2.00, a=[7.61e+003+i*7.36e+003 0], b=[1 0.378-i*0.112]) | |
252 16: fit(a)(fs=10.00, ntaps=2.00, a=[7.61e+003-i*7.36e+003 0], b=[1 0.378+i*0.112]) | |
253 17: fit(a)(fs=10.00, ntaps=2.00, a=[3.67e-015-i*4.61e-006 0], b=[1 -1-i*1.08e-010]) | |
254 18: fit(a)(fs=10.00, ntaps=2.00, a=[3.67e-015+i*4.61e-006 0], b=[1 -1+i*1.08e-010]) | |
255 description: | |
256 UUID: 21af6960-61a8-4351-b504-e6f2b5e55b06 | |
257 ---------------------- | |
258 </pre></div> | |
259 | |
260 <p> | |
261 Each object of the <tt>filterbank</tt> is a <tt>miir</tt> filter. | |
262 </p> | |
263 | |
264 <div class="fragment"><pre> | |
265 filt = mod.objs.filters.index(3) | |
266 ------ miir/1 ------- | |
267 b: [1 0.348484501572296] | |
268 histin: 0 | |
269 version: $Id: zdomainfit_content.html,v 1.6 2009/08/27 11:38:58 luigi Exp $ | |
270 ntaps: 2 | |
271 fs: 10 | |
272 infile: | |
273 a: [-54055.7700068032 0] | |
274 histout: 0 | |
275 iunits: [] [1x1 unit] | |
276 ounits: [] [1x1 unit] | |
277 hist: miir.hist [1x1 history] | |
278 procinfo: (empty-plist) [1x1 plist] | |
279 plotinfo: (empty-plist) [1x1 plist] | |
280 name: (fit(a)(3,1))(3) | |
281 description: | |
282 mdlfile: | |
283 UUID: 6e2a1cd8-f17d-4c9d-aea9-4d9a96e41e68 | |
284 --------------------- | |
285 </pre></div> | |
286 | |
287 | |
288 <h2><a name="references">References</a></h2> | |
289 <p> | |
290 <ol> | |
291 <li> B. Gustavsen and A. Semlyen, "Rational approximation of frequency | |
292 domain responses by Vector Fitting", IEEE Trans. Power Delivery | |
293 vol. 14, no. 3, pp. 1052-1061, July 1999. | |
294 <li> B. Gustavsen, "Improving the Pole Relocating Properties of Vector | |
295 Fitting", IEEE Trans. Power Delivery vol. 21, no. 3, pp. | |
296 1587-1592, July 2006. | |
297 <li> Y. S. Mekonnen and J. E. Schutt-Aine, "Fast broadband | |
298 macromodeling technique of sampled time/frequency data using | |
299 z-domain vector-fitting method", Electronic Components and | |
300 Technology Conference, 2008. ECTC 2008. 58th 27-30 May 2008 pp. | |
301 1231 - 1235. | |
302 </ol> | |
303 </p> | |
304 </p> | |
305 | |
306 <br> | |
307 <br> | |
308 <table class="nav" summary="Navigation aid" border="0" width= | |
309 "100%" cellpadding="0" cellspacing="0"> | |
310 <tr valign="top"> | |
311 <td align="left" width="20"><a href="sigproc_example_matrix_linfitsvd_ssm.html"><img src= | |
312 "b_prev.gif" border="0" align="bottom" alt= | |
313 "Iterative linear parameter estimation for multichannel systems - ssm system model in time domain"></a> </td> | |
314 | |
315 <td align="left">Iterative linear parameter estimation for multichannel systems - ssm system model in time domain</td> | |
316 | |
317 <td> </td> | |
318 | |
319 <td align="right">S-Domain Fit</td> | |
320 | |
321 <td align="right" width="20"><a href= | |
322 "sdomainfit.html"><img src="b_next.gif" border="0" align= | |
323 "bottom" alt="S-Domain Fit"></a></td> | |
324 </tr> | |
325 </table><br> | |
326 | |
327 <p class="copy">©LTP Team</p> | |
328 </body> | |
329 </html> |