comparison m-toolbox/test/test_ao_linlsqsvd.m @ 0:f0afece42f48

Import.
author Daniele Nicolodi <nicolodi@science.unitn.it>
date Wed, 23 Nov 2011 19:22:13 +0100
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:f0afece42f48
1 % TEST_AO_LINLSQSVD tests the linlsqsvd method of the AO class.
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % L Ferraioli 10-11-2010
4 %
5 % $Id: test_ao_linlsqsvd.m,v 1.2 2011/02/18 16:15:28 luigi Exp $
6 %
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8
9 %% 1) Determine the coefficients of a linear combination of noises and
10 %% comapre with lscov:
11 %
12 % Make some data
13 fs = 10;
14 nsecs = 10;
15 B1 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'T'));
16 B1.setName;
17 B2 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'T'));
18 B2.setName;
19 B3 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'T'));
20 B3.setName;
21 n = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'm'));
22 c = [ao(1,plist('yunits','m/T')) ao(2,plist('yunits','m/T')) ao(3,plist('yunits','m T^-1'))];
23 y = c(1)*B1 + c(2)*B2 + c(3)*B3 + n;
24 y.simplifyYunits;
25 %%% Get a fit with linlsqsvd
26 pobj1 = linlsqsvd(B1, B2, B3, y);
27 % do linear combination: using lincom
28 yfit1 = lincom(B1, B2, B3, pobj1);
29 yfit1.simplifyYunits;
30 %%% do fit using lscov
31 pobj2 = lscov(B1, B2, B3, y);
32 % do linear combination: using lincom
33 yfit2 = lincom(B1, B2, B3, pobj2);
34 yfit2.simplifyYunits;
35
36 %%% do linear combination: using eval
37 yfit3 = pobj1.eval(B1, B2, B3);
38
39
40 % Plot (compare data with fit)
41 iplot(y, yfit1, yfit2, yfit3)
42
43 %% 2) Determine the coefficients of a linear combination of noises:
44 %
45 % Make some data
46 fs = 10;
47 nsecs = 10;
48 x1 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'T'));
49 x1.setName;
50 x2 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'm'));
51 x2.setName;
52 x3 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'C'));
53 x3.setName;
54 n = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'm'));
55 c = [ao(1,plist('yunits','m/T')) ao(2,plist('yunits','m/m')) ao(3,plist('yunits','m C^-1'))];
56 y = c(1)*x1 + c(2)*x2 + c(3)*x3 + n;
57 y.simplifyYunits;
58
59 %%% Get a fit for c
60 pobj = linlsqsvd(x1, x2, x3, y);
61 % do linear combination: using lincom
62 yfit1 = lincom(x1, x2, x3, pobj);
63
64 %%% do linear combination: using eval
65 pl_split = plist('times', [1 5]);
66 yfit2 = pobj.eval(plist('Xdata', {split(x1, pl_split), split(x2, pl_split), split(x3, pl_split)}));
67
68 % Plot (compare data with fit)
69 iplot(y, yfit1, yfit2, plist('Linestyles', {'-','--'}))
70
71