Mercurial > hg > ltpda
comparison m-toolbox/test/test_ao_noisegen2D.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f0afece42f48 |
---|---|
1 % A test script for ao/noisegen2D | |
2 % | |
3 % DESCRIPTION: Run noisegen2D with test data and test procedure accuracy | |
4 % | |
5 % L. Ferraioli 10-11-08 | |
6 % | |
7 % $Id: test_ao_noisegen2D.m,v 1.9 2010/05/03 19:04:45 luigi Exp $ | |
8 % | |
9 | |
10 %% General use variables and vectors | |
11 | |
12 userdir = 'C:\Users\Luigi'; % You should set your own dir | |
13 | |
14 f = logspace(-6,log10(5),300); | |
15 fs = 10; | |
16 | |
17 Nt = fs*10000; | |
18 | |
19 %% Make white noise | |
20 | |
21 a1 = ao(plist('tsfcn', 'randn(size(t))', 'fs', 10, 'nsecs', 1e5)); | |
22 a2 = ao(plist('tsfcn', 'randn(size(t))', 'fs', 10, 'nsecs', 1e5)); | |
23 a = [a1 a2]; | |
24 | |
25 %% CSD Noise models | |
26 | |
27 fundir = fullfile(userdir,'ltp_data_analysis\MDCs\MDC1_UTN'); | |
28 cf = cd; | |
29 cd(fundir); | |
30 [TF,CSD] = mdc1_tf_models(plist('f',f,'fs',fs)); | |
31 cd(cf); | |
32 | |
33 %% Input data psd | |
34 | |
35 a1xx = a1.psd; | |
36 a2xx = a2.psd; | |
37 | |
38 %% Making csd of input data | |
39 | |
40 pl = plist('Nfft', Nt); | |
41 iCSD = cpsd(a,pl); | |
42 | |
43 %% plot input data psd | |
44 | |
45 iplot(a1xx,a2xx) | |
46 | |
47 %% Plot Model Tfs | |
48 | |
49 iplot(TF(1,1),TF(1,2),TF(2,1),TF(2,2)) | |
50 | |
51 %% Plot Model CSD | |
52 | |
53 iplot(CSD(1,1),CSD(1,2),CSD(2,1),CSD(2,2)) | |
54 | |
55 %% Noise generation | |
56 | |
57 pl = plist(... | |
58 'csd11', CSD(1,1), ... | |
59 'csd12', CSD(1,2), ... | |
60 'csd21', CSD(2,1), ... | |
61 'csd22', CSD(2,2), ... | |
62 'MaxIter', 80, ... | |
63 'PoleType', 2, ... | |
64 'MinOrder', 15, ... | |
65 'MaxOrder', 45, ... | |
66 'Weights', 3, ... | |
67 'FITTOL', 1e-3,... | |
68 'MSEVARTOL', 1e-1,... | |
69 'UseSym', 0,... | |
70 'Plot', false,... | |
71 'Disp', false); | |
72 | |
73 ac = noisegen2D(a, pl); | |
74 | |
75 %% Checking results and starting data | |
76 | |
77 % iplot(a) | |
78 iplot(ac) | |
79 | |
80 %% Making cross-spectrum | |
81 | |
82 % acxx = ac.cpsd; | |
83 plpsd = plist('navs',2,'order',1,'olap',50); | |
84 acxx1 = ac(1).psd(plpsd); | |
85 acxx2 = ac(2).psd(plpsd); | |
86 | |
87 iplot(acxx1,CSD(1,1),acxx2,CSD(2,2)) | |
88 | |
89 %% Plotting spectra | |
90 | |
91 % iplot(acxx); | |
92 | |
93 iplot(acxx(1,1),CSD(1,1)) | |
94 iplot(abs(acxx(1,2)),abs(CSD(1,2))) | |
95 iplot(acxx(2,2),CSD(2,2)) | |
96 | |
97 %% | |
98 | |
99 m1=mean(acxx(2,2).data.y(end-10,end)) % calculate average on the tail of channel 2 | |
100 m2=mean(CSD(2,2).data.y(end-5,end))% calculate average on the tail of channel 2 | |
101 m1/m2 % verify that the ratio is near 1 | |
102 | |
103 %% | |
104 % ************************************************************************ | |
105 % Some more analysis for testing the accuracy of noise generation procedure | |
106 % ************************************************************************ | |
107 | |
108 %% Extracting filters from data | |
109 | |
110 Filt11 = find(ac(1).procinfo,'FILT11'); | |
111 Filt12 = find(ac(1).procinfo,'FILT12'); | |
112 Filt21 = find(ac(2).procinfo,'FILT21'); | |
113 Filt22 = find(ac(2).procinfo,'FILT22'); | |
114 | |
115 %% Calculating filters responses | |
116 | |
117 tr11 = resp(Filt11,plist('f',f)); | |
118 rFilt11 = tr11(1); | |
119 for ii = 2:numel(tr11) | |
120 rFilt11 = rFilt11 + tr11(ii); | |
121 end | |
122 rFilt11.setName('rFilt11', 'internal'); | |
123 | |
124 tr12 = resp(Filt12,plist('f',f)); | |
125 rFilt12 = tr12(1); | |
126 for ii = 2:numel(tr12) | |
127 rFilt12 = rFilt12 + tr12(ii); | |
128 end | |
129 rFilt12.setName('rFilt12', 'internal'); | |
130 | |
131 tr21 = resp(Filt21,plist('f',f)); | |
132 rFilt21 = tr21(1); | |
133 for ii = 2:numel(tr21) | |
134 rFilt21 = rFilt21 + tr21(ii); | |
135 end | |
136 rFilt21.setName('rFilt21', 'internal'); | |
137 | |
138 tr22 = resp(Filt22,plist('f',f)); | |
139 rFilt22 = tr22(1); | |
140 for ii = 2:numel(tr22) | |
141 rFilt22 = rFilt22 + tr22(ii); | |
142 end | |
143 rFilt22.setName('rFilt22', 'internal'); | |
144 | |
145 %% Obtaining transfer functions | |
146 | |
147 % calculating transfer functions from data | |
148 pl = plist('Nfft', Nt); | |
149 etf11 = tfe(a(1),ac(1),pl); | |
150 etf12 = tfe(a(2),ac(1),pl); | |
151 etf21 = tfe(a(1),ac(2),pl); | |
152 etf22 = tfe(a(2),ac(2),pl); | |
153 | |
154 %% Comparing Filters Responses with estimated TFs (e-TFs) | |
155 | |
156 % Comparing filters responses and calculated TFs | |
157 pl = plist('Legends', {'Filter Response','e-TF'}); | |
158 iplot(rFilt11,etf11,pl) | |
159 iplot(rFilt12,etf12,pl) | |
160 iplot(rFilt21,etf21,pl) | |
161 iplot(rFilt22,etf22,pl) | |
162 | |
163 %% Comparing starting TFs (s-TFs) with estimated TFs | |
164 | |
165 pl = plist('Legends', {'s-TF','e-TF'}); | |
166 iplot(TF(1,1),etf11/sqrt(fs)) | |
167 iplot(TF(1,2),etf12/sqrt(fs)) | |
168 iplot(TF(2,1),etf21/sqrt(fs)) | |
169 iplot(TF(2,2),etf22/sqrt(fs)) | |
170 | |
171 %% Building CSD from estimated TFs (e-TFs) | |
172 | |
173 % Output CSD is obtained as | |
174 % eCSD = [TF11 TF12;TF21 TF22]*iCSD*[TF11 TF12;TF21 TF22]' | |
175 eCSD = [etf(1,3) etf(2,3);etf(1,4) etf(2,4)]*iCSD*[etf(1,3) etf(2,3);etf(1,4) etf(2,4)]'; | |
176 | |
177 ecsd11 = eCSD(1,1); | |
178 ecsd12 = eCSD(1,2); | |
179 ecsd22 = eCSD(2,2); | |
180 | |
181 % ecsd11 = etf(1,3).*conj(etf(1,3))+etf(2,3).*conj(etf(2,3)); | |
182 % ecsd12 = etf(1,3).*conj(etf(1,4))+etf(2,3).*conj(etf(2,4)); | |
183 % ecsd22 = etf(2,4).*conj(etf(2,4))+etf(1,4).*conj(etf(1,4)); | |
184 | |
185 %% Comparing original CSD with e-TFs CSD | |
186 | |
187 pl = plist('Legends', {'Original CSD','e-TF CSD'}); | |
188 iplot(abs(CSD(1,1)),ecsd11/(fs),pl) | |
189 iplot(abs(CSD(1,2)),ecsd12/(fs),pl) | |
190 iplot(abs(CSD(2,2)),ecsd22/(fs),pl) | |
191 | |
192 %% Filtering data separately | |
193 | |
194 % This operation is performed internally to the noisegen2D. Output data are | |
195 % then obtained by b1 = b11 + b12 and b2 = b21 + b22 | |
196 b11 = filter(a1,plist('filter',Filt11,'bank','parallel')); | |
197 b12 = filter(a2,plist('filter',Filt12,'bank','parallel')); | |
198 b21 = filter(a1,plist('filter',Filt21,'bank','parallel')); | |
199 b22 = filter(a2,plist('filter',Filt22,'bank','parallel')); | |
200 | |
201 %% Extracting transfer functions from separately filtered data | |
202 | |
203 pl = plist('Nfft', Nt); | |
204 etf11 = tfe(a1,b11,pl); | |
205 etf12 = tfe(a2,b12,pl); | |
206 etf21 = tfe(a1,b21,pl); | |
207 etf22 = tfe(a2,b22,pl); | |
208 | |
209 %% Comparing separately-estimated TFs (se-TFs) with filter responses | |
210 | |
211 pl = plist('Legends', {'Filter Response','se-TF'}); | |
212 iplot(rFilt11,etf11,pl) | |
213 iplot(rFilt12,etf12,pl) | |
214 iplot(rFilt21,etf21,pl) | |
215 iplot(rFilt22,etf22,pl) | |
216 | |
217 %% Building CSD from se-TFs | |
218 | |
219 % Output CSD is obtained as | |
220 % eCSD = [TF11 TF12;TF21 TF22]*iCSD*[TF11 TF12;TF21 TF22]' | |
221 seCSD = [etf11 etf12;etf21 etf22]*iCSD*[etf11 etf12;etf21 etf22]'; | |
222 | |
223 secsd11 = seCSD(1,1); | |
224 secsd12 = seCSD(1,2); | |
225 secsd22 = seCSD(2,2); | |
226 | |
227 % secsd11 = etf11(1,2).*conj(etf11(1,2))+etf12(1,2).*conj(etf12(1,2)); | |
228 % secsd12 = etf11(1,2).*conj(etf21(1,2))+etf12(1,2).*conj(etf22(1,2)); | |
229 % secsd22 = etf22(1,2).*conj(etf22(1,2))+etf21(1,2).*conj(etf21(1,2)); | |
230 | |
231 %% Comparing original CSD with e-TFs CSD | |
232 | |
233 pl = plist('Legends', {'Original CSD','se-TF CSD'}); | |
234 iplot(CSD(1,1),secsd11/(fs),pl) | |
235 iplot(CSD(1,2),secsd12/(fs),pl) | |
236 iplot(CSD(2,2),secsd22/(fs),pl) | |
237 | |
238 %% Comparing filters with TFs obtained by eigendecomposition | |
239 | |
240 % This function output transfer functions as they are obtained by the | |
241 % eigendecomposition process. i.e. before the fitting process | |
242 | |
243 icsd11 = CSD(1,1).data.y*fs/2; | |
244 icsd12 = CSD(1,2).data.y*fs/2; | |
245 icsd21 = CSD(2,1).data.y*fs/2; | |
246 icsd22 = CSD(2,2).data.y*fs/2; | |
247 | |
248 [tf11,tf12,tf21,tf22] = utils.math.eigcsd(icsd11,icsd12,icsd21,icsd22,'USESYM',0,'DIG',50,'OTP','TF'); | |
249 | |
250 % Making AOs | |
251 eigtf11 = ao(fsdata(f,tf11,fs)); | |
252 eigtf12 = ao(fsdata(f,tf12,fs)); | |
253 eigtf21 = ao(fsdata(f,tf21,fs)); | |
254 eigtf22 = ao(fsdata(f,tf22,fs)); | |
255 | |
256 %% Comparing eig-TFs with output filters | |
257 | |
258 % Compare TFs before and after the fitting process | |
259 | |
260 pl = plist('Legends', {'eig-TF','Filter Response'}); | |
261 iplot(eigtf11,rFilt11,pl) | |
262 iplot(eigtf12,rFilt12,pl) | |
263 iplot(eigtf21,rFilt21,pl) | |
264 iplot(eigtf22,rFilt22,pl) | |
265 | |
266 %% Phase difference between eig-TFs and output filters | |
267 | |
268 % checking that phase differences between TFs are preserved by the fitting | |
269 % process | |
270 eigph1 = unwrap(angle(eigtf11)-angle(eigtf21)); | |
271 filtph1 = unwrap(angle(rFilt11)-angle(rFilt21)); | |
272 eigph2 = unwrap(angle(eigtf22)-angle(eigtf12)); | |
273 filtph2 = unwrap(angle(rFilt22)-angle(rFilt12)); | |
274 | |
275 pl = plist('Legends',{'eig-TF \Delta\phi','Filter \Delta\phi'},'YScales',{'All','lin'}); | |
276 iplot(eigph1,filtph1+2*pi,pl) | |
277 iplot(eigph2,filtph2+2*pi,pl) | |
278 | |
279 %% Comparing eig-TFs with se-TFs | |
280 | |
281 % Compare eigendecomposition results with separately estimated TFs (se-TFs) | |
282 pl = plist('Legends', {'eig-TF','se-TF'}); | |
283 iplot(eigtf11,etf11(1,2),pl) | |
284 iplot(eigtf12,etf12(1,2),pl) | |
285 iplot(eigtf21,etf21(1,2),pl) | |
286 iplot(eigtf22,etf22(1,2),pl) | |
287 | |
288 %% Phase difference between eig-TFs and se-TFs | |
289 | |
290 % checking that phase differences between TFs are preserved by the fitting | |
291 % process also for the filtered data (se-TFs) | |
292 eigph1 = unwrap(angle(eigtf11)-angle(eigtf21)); | |
293 filtph1 = unwrap(angle(etf11(1,2))-angle(etf21(1,2))); | |
294 eigph2 = unwrap(angle(eigtf22)-angle(eigtf12)); | |
295 filtph2 = unwrap(angle(etf22(1,2))-angle(etf12(1,2))); | |
296 | |
297 pl = plist('Legends',{'eig-TF \Delta\phi','se-TF \Delta\phi'},'YScales',{'All','lin'}); | |
298 iplot(eigph1,filtph1+2*pi,pl) | |
299 iplot(eigph2,filtph2,pl) | |
300 | |
301 % END |