Mercurial > hg > ltpda
comparison m-toolbox/test/test_matrix_linlsqsvd.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f0afece42f48 |
---|---|
1 % TEST_MATRIX_LINLSQSVD tests the linlsqsvd method of the AO class. | |
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
3 % L Ferraioli 10-11-2010 | |
4 % | |
5 % $Id: test_matrix_linlsqsvd.m,v 1.1 2011/02/18 17:07:35 luigi Exp $ | |
6 % | |
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
8 | |
9 %% 1) Determine the coefficients of a linear combination of noises and | |
10 %% comapre with lscov: | |
11 % | |
12 % Make some data | |
13 fs = 10; | |
14 nsecs = 10; | |
15 B1 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'T')); | |
16 B1.setName; | |
17 B2 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'T')); | |
18 B2.setName; | |
19 B3 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'T')); | |
20 B3.setName; | |
21 B4 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'T')); | |
22 B4.setName; | |
23 | |
24 C1 = matrix(B1,B2,plist('shape',[2,1])); | |
25 C1.setName; | |
26 C2 = matrix(B3,B4,plist('shape',[2,1])); | |
27 C2.setName; | |
28 | |
29 C = matrix([B1 B3;B2 B4]); | |
30 C.setName; | |
31 | |
32 n1 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'm')); | |
33 n2 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'm')); | |
34 | |
35 n = matrix(n1,n2,plist('shape',[2,1])); | |
36 n.setName; | |
37 | |
38 a = [ao(1,plist('yunits','m/T')) ao(2,plist('yunits','m/T'))]; | |
39 A = matrix(a,plist('shape',[2,1])); | |
40 | |
41 % assign output values | |
42 y = C*A + n; | |
43 | |
44 %%% Get a fit with linlsqsvd | |
45 pobj1 = linlsqsvd(C1, C2, y); | |
46 | |
47 % combine results | |
48 for ii=1:numel(pobj1.y) | |
49 prs(ii) = ao(cdata(pobj1.y(ii))); | |
50 prs(ii).setYunits(pobj1.yunits(ii)); | |
51 end | |
52 Pars = matrix(prs,plist('shape',[numel(prs),1])); | |
53 yfit1 = C*Pars; | |
54 | |
55 %%% do linear combination: using eval | |
56 yfit2 = pobj1.eval; | |
57 | |
58 % Plot (compare data with fit) | |
59 iplot(y.objs(1), yfit1.objs(1), yfit2.objs(1)) | |
60 iplot(y.objs(2), yfit1.objs(2), yfit2.objs(2)) | |
61 | |
62 %% 2) Determine the coefficients of a linear combination of noises: | |
63 % | |
64 % Make some data | |
65 fs = 10; | |
66 nsecs = 10; | |
67 x1 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'T')); | |
68 x1.setName; | |
69 x2 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'm')); | |
70 x2.setName; | |
71 x3 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'T')); | |
72 x3.setName; | |
73 x4 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'm')); | |
74 x4.setName; | |
75 | |
76 C1 = matrix(x1,x3,plist('shape',[2,1])); | |
77 C1.setName; | |
78 C2 = matrix(x2,x4,plist('shape',[2,1])); | |
79 C2.setName; | |
80 | |
81 C = matrix([x1 x2;x3 x4]); | |
82 C.setName; | |
83 | |
84 n1 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'm')); | |
85 n2 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'm')); | |
86 n = matrix(n1,n2,plist('shape',[2,1])); | |
87 n.setName; | |
88 | |
89 a = [ao(1,plist('yunits','m/T')) ao(2,plist('yunits','m/m'))]; | |
90 A = matrix(a,plist('shape',[2,1])); | |
91 A.setName; | |
92 | |
93 y = C*A + n; | |
94 | |
95 %%% Get a fit with linlsqsvd | |
96 pobj1 = linlsqsvd(C1, C2, y); | |
97 | |
98 | |
99 % combine results | |
100 for ii=1:numel(pobj1.y) | |
101 prs(ii) = ao(cdata(pobj1.y(ii))); | |
102 prs(ii).setYunits(pobj1.yunits(ii)); | |
103 end | |
104 Pars = matrix(prs,plist('shape',[numel(prs),1])); | |
105 yfit1 = C*Pars; | |
106 | |
107 %%% do linear combination: using eval | |
108 yfit2 = pobj1.eval; | |
109 | |
110 % Plot (compare data with fit) | |
111 iplot(y.objs(1), yfit1.objs(1), yfit2.objs(1)) | |
112 iplot(y.objs(2), yfit1.objs(2), yfit2.objs(2)) | |
113 | |
114 |