Mercurial > hg > ltpda
diff testing/utp_1.1/utps/ao/utp_ao_cohere.m @ 44:409a22968d5e default
Add unit tests
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Tue, 06 Dec 2011 18:42:11 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/testing/utp_1.1/utps/ao/utp_ao_cohere.m Tue Dec 06 18:42:11 2011 +0100 @@ -0,0 +1,2323 @@ +% UTP_AO_COHERE a set of UTPs for the ao/cohere method +% +% M Hewitson 06-08-08 +% +% $Id: utp_ao_cohere.m,v 1.44 2011/07/22 12:29:58 mauro Exp $ +% + +% <MethodDescription> +% +% The cohere method of the ao class computes the coherence between two +% time-series AOs. +% +% </MethodDescription> + +function results = utp_ao_cohere(varargin) + + % Check the inputs + if nargin == 0 + + % Some keywords + class = 'ao'; + mthd = 'cohere'; + + results = []; + disp('******************************************************'); + disp(['**** Running UTPs for ' class '/' mthd]); + disp('******************************************************'); + + % Test AOs + [at1,at2,at3,at4,at5,at6] = eval(['get_test_objects_' class]); + + % Exception list for the UTPs: + [ple1,ple2,ple3,ple4,ple5,ple6] = get_test_ples(); + + % Get default window from the preferences + prefs = getappdata(0, 'LTPDApreferences'); + defaultWinType = char(prefs.getMiscPrefs.getDefaultWindow); + + % Run the tests + results = [results utp_01]; % getInfo call + results = [results utp_02]; % Vector input (only with two objects) + results = [results utp_03]; % Matrix input (not possible) + results = [results utp_04]; % List input (only with two objects) + results = [results utp_05]; % Test with mixed input (not possible) + results = [results utp_06]; % Test history is working + results = [results utp_07]; % Test the modify call works + results = [results utp_08]; % Test input data shape == output data shape + results = [results utp_09]; % Test output of the data + results = [results utp_10]; % Test the basic usage against MATLAB mscohere + + results = [results utp_11(mthd, [at1 at1], ple1)]; % Test plotinfo doesn't disappear + + results = [results utp_12]; % Test basic symmetry properties of cohere (C) + results = [results utp_13]; % Test basic symmetry properties of cohere (MS) + results = [results utp_14]; % Test basic symmetry properties of cohere (C) + results = [results utp_15]; % Test basic symmetry properties of cohere (MS) + results = [results utp_16]; % Test basic relationship (MS) <-> (C) + results = [results utp_17]; % Test units handling: complex cohere + results = [results utp_18]; % Test units handling: magnitude-squared cohere + results = [results utp_19]; % Test data lengths + results = [results utp_20]; % Test with single window + results = [results utp_21]; % Test number of averages: requested/obtained + results = [results utp_22]; % Test number of averages: correct number + results = [results utp_23]; % Test number of averages: syntax + results = [results utp_24]; % Test the basic usage against MATLAB mscohere + results = [results utp_25]; % Test Kaiser win and olap: (C) + results = [results utp_26]; % Test Kaiser win and olap: (MS) + results = [results utp_30]; % Special cases: same input + + disp('Done.'); + disp('******************************************************'); + + elseif nargin == 1 % Check for UTP functions + if strcmp(varargin{1}, 'isutp') + results = 1; + else + results = 0; + end + else + error('### Incorrect inputs') + end + + %% UTP_01 + + % <TestDescription> + % + % Tests that the getInfo call works for this method. + % + % </TestDescription> + function result = utp_01 + + + % <SyntaxDescription> + % + % Test that the getInfo call works for no sets, all sets, and each set + % individually. + % + % </SyntaxDescription> + + try + % <SyntaxCode> + % Call for no sets + io(1) = eval([class '.getInfo(''' mthd ''', ''None'')']); + % Call for all sets + io(2) = eval([class '.getInfo(''' mthd ''')']); + % Call for each set + for kk=1:numel(io(2).sets) + io(kk+2) = eval([class '.getInfo(''' mthd ''', ''' io(2).sets{kk} ''')']); + end + % </SyntaxCode> + stest = true; + catch err + disp(err.message) + stest = false; + end + + % <AlgoDescription> + % + % 1) Check that getInfo call returned an minfo object in all cases. + % 2) Check that all plists have the correct parameters. + % + % </AlgoDescription> + + atest = true; + if stest + % <AlgoCode> + % check we have minfo objects + if isa(io, 'minfo') + + % SET 'None' + if ~isempty(io(1).sets), atest = false; end + if ~isempty(io(1).plists), atest = false; end + % Check all Sets + if ~any(strcmpi(io(2).sets, 'Default')), atest = false; end + if numel(io(2).plists) ~= numel(io(2).sets), atest = false; end + % SET 'Default' + if io(3).plists.nparams ~= 9, atest = false; end + % Check key + if ~io(3).plists.isparam('nfft'), atest = false; end + if ~io(3).plists.isparam('win'), atest = false; end + if ~io(3).plists.isparam('olap'), atest = false; end + if ~io(3).plists.isparam('type'), atest = false; end + if ~io(3).plists.isparam('order'), atest = false; end + if ~io(3).plists.isparam('navs'), atest = false; end + if ~io(3).plists.isparam('times'), atest = false; end + if ~io(3).plists.isparam('split'), atest = false; end + if ~io(3).plists.isparam('psll'), atest = false; end + % Check default value + if ~isequal(io(3).plists.find('nfft'), -1), atest = false; end + if ~strcmpi(io(3).plists.find('win'), defaultWinType), atest = false; end + if ~isequal(io(3).plists.find('olap'), -1), atest = false; end + if ~isequal(io(3).plists.find('type'), 'C'), atest = false; end + if ~isequal(io(3).plists.find('order'), 0), atest = false; end + if ~isequal(io(3).plists.find('navs'), -1), atest = false; end + if ~isEmptyDouble(io(3).plists.find('times')), atest = false; end + if ~isEmptyDouble(io(3).plists.find('split')), atest = false; end + if ~isequal(io(3).plists.find('psll'), 200), atest = false; end + % Check options + if ~isequal(io(3).plists.getOptionsForParam('nfft'), {-1}), atest = false; end + if ~isequal(io(3).plists.getOptionsForParam('win'), specwin.getTypes), atest = false; end + if ~isequal(io(3).plists.getOptionsForParam('olap'), {-1}), atest = false; end + if ~isequal(io(3).plists.getOptionsForParam('type'), {'C', 'MS'}), atest = false; end + if ~isequal(io(3).plists.getOptionsForParam('order'), {-1 0 1 2 3 4 5 6 7 8 9}), atest = false; end + if ~isequal(io(3).plists.getOptionsForParam('navs'), {-1}), atest = false; end + if ~isequal(io(3).plists.getOptionsForParam('times'), {[]}), atest = false; end + if ~isequal(io(3).plists.getOptionsForParam('split'), {[]}), atest = false; end + if ~isequal(io(3).plists.getOptionsForParam('psll'), {200}), atest = false; end + end + % </AlgoCode> + else + atest = false; + end + + % Return a result structure + result = utp_prepare_result(atest, stest, dbstack, mfilename); + end % END UTP_01 + + %% UTP_02 + + % <TestDescription> + % + % Tests that the cohere method works with a vector of AOs as input. (only + % with two objects in the vector) + % + % </TestDescription> + function result = utp_02 + + % <SyntaxDescription> + % + % Test that the cohere method works for a vector of AOs as input. + % + % </SyntaxDescription> + + try + % <SyntaxCode> + avec = [at1 at5]; + out = cohere(avec); + % </SyntaxCode> + stest = true; + catch err + disp(err.message) + stest = false; + end + + % <AlgoDescription> + % + % 1) Check that the number of elements in 'out' is equal to 1. + % 2) Check that each output AO contains the correct data. + % + % </AlgoDescription> + + atest = true; + if stest + % <AlgoCode> + % Check we have the correct number of outputs + if numel(out) ~= 1, atest = false; end + + TOL = 1e-13; + + % Get shortest vector + lmin = min([length(at1.y), length(at5.y), length(at6.y)]); + % Set Nfft + Nfft = lmin; + % Get default window + if strcmpi(defaultWinType, 'kaiser') + win = specwin(defaultWinType, Nfft, find(ao.getInfo('cohere').plists, 'psll')); + else + win = specwin(defaultWinType, Nfft); + end + % Compute magnitude squared coherence estimate with MATLAB + % out: at1->at5 + [cxy, f] = mscohere(at1.y(1:lmin), at5.y(1:lmin), win.win, Nfft/2, Nfft, at1.fs); + if any(abs(out.y-cxy > TOL)), atest = false; end + if any(abs(out.x-f > TOL)), atest = false; end + % </AlgoCode> + else + atest = false; + end + + % Return a result structure + result = utp_prepare_result(atest, stest, dbstack, mfilename); + end % END UTP_02 + + %% UTP_03 + + % <TestDescription> + % + % Test that the cohere method doesn't work for a matrix of AOs as input. + % + % </TestDescription> + function result = utp_03 + + % <SyntaxDescription> + % + % Test that the cohere method doesn't work for a matrix of AOs as input. + % + % </SyntaxDescription> + + try + % <SyntaxCode> + amat = [at1 at2;at5 at6]; + out = cohere(amat); + % </SyntaxCode> + stest = false; + catch err + stest = true; + end + + % <AlgoDescription> + % + % 1) Nothing to check. + % + % </AlgoDescription> + + atest = true; + if stest + % <AlgoCode> + % </AlgoCode> + else + atest = false; + end + + % Return a result structure + result = utp_prepare_result(atest, stest, dbstack, mfilename); + end % END UTP_03 + + %% UTP_04 + + % <TestDescription> + % + % Tests that the cohere method works with a list of AOs as input. + % + % </TestDescription> + function result = utp_04 + + % <SyntaxDescription> + % + % Test that the cohere method works for a list of AOs as input. + % + % </SyntaxDescription> + + try + % <SyntaxCode> + out = cohere(at1,at5); + % </SyntaxCode> + stest = true; + catch err + disp(err.message) + stest = false; + end + + % <AlgoDescription> + % + % 1) Check that the number of elements in 'out' is equal to 1. + % 2) Check that each output AO contains the correct data. + % + % </AlgoDescription> + + atest = true; + if stest + % <AlgoCode> + % Check we have the correct number of outputs + if numel(out) ~= 1, atest = false; end + + TOL = 1e-13; + + % Get shortest vector + lmin = min([length(at1.y), length(at5.y)]); + % Set Nfft + Nfft = lmin; + % Get default window + if strcmpi(defaultWinType, 'kaiser') + win = specwin(defaultWinType, Nfft, find(ao.getInfo('cohere').plists, 'psll')); + else + win = specwin(defaultWinType, Nfft); + end + % Compute magnitude squared coherence estimate with MATLAB + % out: at1->at5 + [cxy, f] = mscohere(at1.y(1:lmin), at5.y(1:lmin), win.win, Nfft/2, Nfft, at1.fs); + if any(abs(out.y-cxy > TOL)), atest = false; end + if any(abs(out.x-f > TOL)), atest = false; end + % </AlgoCode> + else + atest = false; + end + + % Return a result structure + result = utp_prepare_result(atest, stest, dbstack, mfilename); + end % END UTP_04 + + %% UTP_05 + + % <TestDescription> + % + % Test that the cohere method doesn't work with an input of matrices + % and vectors and single AOs. + % + % </TestDescription> + function result = utp_05 + + % <SyntaxDescription> + % + % Test that the cohere method doesn't work with an input of matrices + % and vectors and single AOs. + % + % </SyntaxDescription> + + try + % <SyntaxCode> + out = cohere([at5 at6], [at5 at1; at6 at1], at6); + stest = false; + % </SyntaxCode> + catch err + stest = true; + end + + % <AlgoDescription> + % + % 1) Nothing to check + % + % </AlgoDescription> + + atest = true; + if stest + % <AlgoCode> + % </AlgoCode> + else + atest = false; + end + + % Return a result structure + result = utp_prepare_result(atest, stest, dbstack, mfilename); + end % END UTP_05 + + %% UTP_06 + + % <TestDescription> + % + % Tests that the cohere method properly applies history. + % + % </TestDescription> + function result = utp_06 + + % <SyntaxDescription> + % + % Test that the result of applying the cohere method can be processed back + % to an m-file. + % + % </SyntaxDescription> + + try + % <SyntaxCode> + out = cohere(at5,at6); + mout = rebuild(out); + % </SyntaxCode> + stest = true; + catch err + disp(err.message) + stest = false; + end + + % <AlgoDescription> + % + % 1) Check that the last entry in the history of 'out' corresponds to + % 'cohere'. + % 2) Check that the re-built object is the same as 'out'. + % + % </AlgoDescription> + + atest = true; + if stest + % <AlgoCode> + % Check the last step in the history of 'out' + if ~strcmp(out.hist.methodInfo.mname, 'cohere'), atest = false; end + % Check the re-built object + if ~eq(mout, out, ple2), atest = false; end + % </AlgoCode> + else + atest = false; + end + + % Return a result structure + result = utp_prepare_result(atest, stest, dbstack, mfilename); + end % END UTP_06 + + %% UTP_07 + + % <TestDescription> + % + % Tests that the cohere method can not modify the input AO. + % + % </TestDescription> + function result = utp_07 + + % <SyntaxDescription> + % + % Test that the cohere method can not modify the input AO. + % The method must throw an error for the modifier call. + % + % </SyntaxDescription> + + try + % <SyntaxCode> + % copy at1 to work with + ain = ao(at1); + % modify ain + ain.cohere(at5); + % </SyntaxCode> + stest = false; + catch err + stest = true; + end + + % <AlgoDescription> + % + % 1) Nothing to check. + % + % </AlgoDescription> + + atest = true; + if stest + % <AlgoCode> + % </AlgoCode> + else + atest = false; + end + + % Return a result structure + result = utp_prepare_result(atest, stest, dbstack, mfilename); + end % END UTP_07 + + %% UTP_08 + + % <TestDescription> + % + % Test the shape of the output. + % + % </TestDescription> + function result = utp_08 + + % <SyntaxDescription> + % + % Test that the cohere method keeps the data shape of the input object. The + % input AO must be an AO with row data and an AO with column data. + % + % </SyntaxDescription> + + try + % <SyntaxCode> + out1 = cohere(at5, at6); + out2 = cohere(at6, at5); + % </SyntaxCode> + stest = true; + catch err + disp(err.message) + stest = false; + end + + % <AlgoDescription> + % + % 1) Check that the shpe of the output data doesn't change. + % + % </AlgoDescription> + + atest = true; + if stest + % <AlgoCode> + % Check the shape of the output data + if size(out1.data.y, 2) ~= 1, atest = false; end + if size(out2.data.y, 1) ~= 1, atest = false; end + % </AlgoCode> + else + atest = false; + end + + % Return a result structure + result = utp_prepare_result(atest, stest, dbstack, mfilename); + end % END UTP_08 + + %% UTP_09 + + % <TestDescription> + % + % Check that the cohere method pass back the output objects to a list of + % output variables or to a single variable. + % + % </TestDescription> + function result = utp_09 + + % <SyntaxDescription> + % + % This test is not longer necessary because the cohere method pass back + % always only one object. + % + % </SyntaxDescription> + + try + % <SyntaxCode> + % </SyntaxCode> + stest = true; + catch err + disp(err.message) + stest = false; + end + + % <AlgoDescription> + % + % 1) Nothing to check. + % + % </AlgoDescription> + + atest = true; + if stest + % <AlgoCode> + % </AlgoCode> + else + atest = false; + end + + % Return a result structure + result = utp_prepare_result(atest, stest, dbstack, mfilename); + end % END UTP_09 + + %% UTP_10 + + % <TestDescription> + % + % Tests that the cohere method agrees with MATLAB's mscohere when + % configured to use the same parameters. + % + % </TestDescription> + function result = utp_10 + + % <SyntaxDescription> + % + % Test that applying cohere works on two AOs. + % + % </SyntaxDescription> + + try + % <SyntaxCode> + % Construct two test AOs + nsecs = 10; + fs = 1000; + pl = plist('nsecs', nsecs, 'fs', fs, 'tsfcn', 'randn(size(t))'); + a1 = ao(pl); a2 = ao(pl); + % Filter one time-series + f2 = miir(plist('type', 'bandpass', 'fs', fs, 'order', 3, 'fc', [50 250])); + a1f = filter(a1, plist('filter', f2)); + % make some cross-power + a4 = a1f+a2; a4.setName; + % Compute coherence + Nfft = 2*fs; + win = specwin('Hanning', Nfft); + pl = plist('Nfft', Nfft, 'Win', win.type, 'order', -1, 'type', 'MS'); + out = cohere(a4,a1,pl); + % </SyntaxCode> + stest = true; + catch err + disp(err.message) + stest = false; + end + + % <AlgoDescription> + % + % 1) Check that output agrees with the output of MATLAB's mscohere. + % 2) Check that the shape of the output data is equal to the input data + % + % </AlgoDescription> + + atest = true; + if stest + % <AlgoCode> + % Compute coherence using MATLAB's cohere + [cxy, f] = mscohere(a4.y, a1.y, win.win, Nfft/2, Nfft, a1.fs); + if ne(cxy(:), out.y), atest = false; end + if ne(f, out.x), atest = false; end + if ne(out, out, ple2), atest = false; end + % Check the data shape + if size(a4.y,1) == 1 + if size(out.y,1) ~= 1, atest = false; end + else + if size(out.y,2) ~= 1, atest = false; end + end + % </AlgoCode> + else + atest = false; + end + + % Return a result structure + result = utp_prepare_result(atest, stest, dbstack, mfilename); + end % END UTP_10 + + + %% UTP_12 + + % <TestDescription> + % + % Tests symmetry properties of complex-coherence: + % 1) white noise produced from normal pdf, with a given mean value and + % sigma (distribution's 1st and 2nd orders) + % 2) white noise produced from normal pdf, with a given mean value and + % sigma (distribution's 1st and 2nd orders) + % 3) complex coherence of the white noise series + % 4) compare C(x,y) with conj(C(y,x)) + % 5) compare C(x,x) and C(y,y) with 1 + % + + % </TestDescription> + function result = utp_12 + + % <SyntaxDescription> + % + % 1) Prepare the test tsdata: + % white noise from normal distribution + offset + % 2) Assign a random unit + % 3) Prepare the test tsdata: + % white noise from normal distribution + offset + % 4) Assign a random unit + % 5) complex coherence of the white noise + % + % </SyntaxDescription> + + % <SyntaxCode> + try + + % Array of parameters to pick from + fs_list = [0.1;1;10]; + nsecs_list = [100:100:10000]'; + sigma_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; + mu_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; + + % Build time-series test data + + % Picks the values at random from the list + fs = utils.math.randelement(fs_list, 1); + nsecs = utils.math.randelement(nsecs_list, 1); + sigma_distr = utils.math.randelement(sigma_distr_list, 1); + mu_distr = utils.math.randelement(mu_distr_list, 1); + f = [1:5] / 100 * fs; + A = sigma_distr + sigma_distr*rand(1,1); + phi = 0 + 2*pi*rand(1,1); + + % White noise + type = 'Normal'; + a_n1 = ao(plist('waveform', 'noise', ... + 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); + a_n2 = ao(plist('waveform', 'noise', ... + 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); + a_const = ao(mu_distr); + a_wave = ao(plist('waveform', 'sine-wave', ... + 'fs', fs, 'nsecs', nsecs, 'f', f, 'A', A, 'phi', phi)); + a_1 = a_n1 + a_const + a_wave; + a_2 = a_n2 + a_wave; + + % Set units and prefix from those supported + unit_list = unit.supportedUnits; + % remove the first empty unit '' from the list, because then is it + % possible that we add a prefix to an empty unit + unit_list = unit_list(2:end); + prefix_list = unit.supportedPrefixes; + a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); + a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); + + % Evaluate the complex coherence of the time-series data + win_list = specwin.getTypes; + win_type = utils.math.randelement(win_list(~strcmpi(win_list, 'levelledhanning')), 1); + win_type = win_type{1}; + if strcmp(win_type, 'Kaiser') + win = specwin(win_type, 1, find(ao.getInfo('psd').plists, 'psll')); + else + win = specwin(win_type, 1); + end + olap = win.rov; + detrend = 0; + scale_type = 'C'; + n_pts = nsecs*fs/10; + + C12 = cohere(a_1, a_2, ... + plist('Win', win.type, 'olap', olap, 'Nfft', n_pts, 'order', detrend, 'type', scale_type)); + C21 = cohere(a_2, a_1, ... + plist('Win', win.type, 'olap', olap, 'Nfft', n_pts, 'order', detrend, 'type', scale_type)); + C21_cc = conj(C21); + C11 = cohere(a_1, a_1, ... + plist('Win', win.type, 'olap', olap, 'Nfft', n_pts, 'order', detrend, 'type', scale_type)); + C22 = cohere(a_2, a_2, ... + plist('Win', win.type, 'olap', olap, 'Nfft', n_pts, 'order', detrend, 'type', scale_type)); + stest = true; + + catch err + disp(err.message) + stest = false; + end + % </SyntaxCode> + + % <AlgoDescription> + % + % 1) Check that C(x,y) equals conj(C(y,x)) + % 2) Check that C(x,x) equals 1 + % 2) Check that C(y,y) equals 1 + + % </AlgoDescription> + + % <AlgoCode> + atest = true; + + if stest + if ~eq(C12.data, C21_cc.data, 'dy') || ... + ~isequal(C11.y, ones(size(C11.y))) || ... + ~isequal(C22.y, ones(size(C22.y))) + atest = false; + end + else + atest = false; + end + % </AlgoCode> + + % Return a result structure + result = utp_prepare_result(atest, stest, dbstack, mfilename); + end % END UTP_12 + + %% UTP_13 + + % <TestDescription> + % + % Tests symmetry properties of complex-coherence: + % 1) white noise produced from normal pdf, with a given mean value and + % sigma (distribution's 1st and 2nd orders) + % 2) white noise produced from normal pdf, with a given mean value and + % sigma (distribution's 1st and 2nd orders) + % 3) magnitude-squared coherence of the white noise series + % 4) compare C(x,y) with C(y,x) + % 5) compare C(x,x) and C(y,y) with 1 + % + + % </TestDescription> + function result = utp_13 + + % <SyntaxDescription> + % + % 1) Prepare the test tsdata: + % white noise from normal distribution + offset + % 2) Assign a random unit + % 3) Prepare the test tsdata: + % white noise from normal distribution + offset + % 4) Assign a random unit + % 5) magnitude-squared coherence of the white noise + % + % </SyntaxDescription> + + % <SyntaxCode> + try + + % Array of parameters to pick from + fs_list = [0.1;1;10]; + nsecs_list = [100:100:10000]'; + sigma_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; + mu_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; + + % Build time-series test data + + % Picks the values at random from the list + fs = utils.math.randelement(fs_list, 1); + nsecs = utils.math.randelement(nsecs_list, 1); + sigma_distr = utils.math.randelement(sigma_distr_list, 1); + mu_distr = utils.math.randelement(mu_distr_list, 1); + f = [1:5] / 100 * fs; + A = sigma_distr + sigma_distr*rand(1,1); + phi = 0 + 2*pi*rand(1,1); + + % White noise + type = 'Normal'; + a_n1 = ao(plist('waveform', 'noise', ... + 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); + a_n2 = ao(plist('waveform', 'noise', ... + 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); + a_const = ao(mu_distr); + a_wave = ao(plist('waveform', 'sine-wave', ... + 'fs', fs, 'nsecs', nsecs, 'f', f, 'A', A, 'phi', phi)); + a_1 = a_n1 + a_const + a_wave; + a_2 = a_n2 + a_wave; + + % Set units and prefix from those supported + unit_list = unit.supportedUnits; + % remove the first empty unit '' from the list, because then is it + % possible that we add a prefix to an empty unit + unit_list = unit_list(2:end); + prefix_list = unit.supportedPrefixes; + a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); + a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); + + % Evaluate the magnitude-squared coherence of the time-series data + win_list = specwin.getTypes; + win_type = utils.math.randelement(win_list(~strcmpi(win_list, 'levelledhanning')), 1); + win_type = win_type{1}; + if strcmp(win_type, 'Kaiser') + win = specwin(win_type, 1, find(ao.getInfo('psd').plists, 'psll')); + else + win = specwin(win_type, 1); + end + olap = win.rov; + detrend = 0; + scale_type = 'MS'; + n_pts = nsecs*fs/10; + + C12 = cohere(a_1, a_2, ... + plist('Win', win.type, 'olap', olap, 'Nfft', n_pts, 'order', detrend, 'type', scale_type)); + C21 = cohere(a_2, a_1, ... + plist('Win', win.type, 'olap', olap, 'Nfft', n_pts, 'order', detrend, 'type', scale_type)); + C11 = cohere(a_1, a_1, ... + plist('Win', win.type, 'olap', olap, 'Nfft', n_pts, 'order', detrend, 'type', scale_type)); + C22 = cohere(a_2, a_2, ... + plist('Win', win.type, 'olap', olap, 'Nfft', n_pts, 'order', detrend, 'type', scale_type)); + stest = true; + + catch err + disp(err.message) + stest = false; + end + % </SyntaxCode> + + % <AlgoDescription> + % + % 1) Check that C(x,y) equals C(y,x) + % 1) Check that C(x,x) equals 1 + % 1) Check that C(y,y) equals 1 + + % </AlgoDescription> + + % <AlgoCode> + atest = true; + + if stest + if ~isequal(C12.data, C21.data) || ... + ~isequal(C11.y, ones(size(C11.y))) ... + || ~isequal(C22.y, ones(size(C22.y))) + atest = false; + end + if atest == false + fs + nsecs + sigma_distr + mu_distr + f + A + phi + end + else + atest = false; + end + % </AlgoCode> + + % Return a result structure + result = utp_prepare_result(atest, stest, dbstack, mfilename); + end % END UTP_13 + + %% UTP_14 + + % <TestDescription> + % + % Tests symmetry properties of complex-coherence: + % 1) white noise produced from normal pdf, with a given mean value and + % sigma (distribution's 1st and 2nd orders) + % 2) white noise produced from normal pdf, with a given mean value and + % sigma (distribution's 1st and 2nd orders) + % 3) complex coherence of the combination of white noise series + % 4) compare C(x,y) with 1 + % + + % </TestDescription> + function result = utp_14 + + % <SyntaxDescription> + % + % 1) Prepare the test tsdata: + % white noise from normal distribution + offset + % 2) Assign a random unit + % 3) Prepare the test tsdata: + % white noise from normal distribution + offset + % 4) Assign a random unit + % 5) complex coherence of the combination of noise + % + % </SyntaxDescription> + + % <SyntaxCode> + try + + % Array of parameters to pick from + fs_list = [0.1;1;10]; + nsecs_list = [100:100:10000]'; + sigma_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; + mu_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; + + % Build time-series test data + + % Picks the values at random from the list + fs = utils.math.randelement(fs_list, 1); + nsecs = utils.math.randelement(nsecs_list, 1); + sigma_distr = utils.math.randelement(sigma_distr_list, 1); + mu_distr = utils.math.randelement(mu_distr_list, 1); + f = [1:5] / 100 * fs; + A = sigma_distr + sigma_distr*rand(1,1); + phi = 0 + 2*pi*rand(1,1); + + % White noise + type = 'Normal'; + a_n = ao(plist('waveform', 'noise', ... + 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); + a_const = ao(mu_distr); + % Sinusoidal signal + a_wave = ao(plist('waveform', 'sine-wave', ... + 'fs', fs, 'nsecs', nsecs, 'f', f, 'A', A, 'phi', phi)); + a_1 = a_n + a_wave; + % Linear combination (totally correlated time series) + a_2 = a_1 + a_const; + + % Set units and prefix from those supported + unit_list = unit.supportedUnits; + % remove the first empty unit '' from the list, because then is it + % possible that we add a prefix to an empty unit + unit_list = unit_list(2:end); + prefix_list = unit.supportedPrefixes; + a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); + a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); + + % Evaluate the complex coherence of the time-series data + win_list = specwin.getTypes; + win_type = utils.math.randelement(win_list(~strcmpi(win_list, 'levelledhanning')), 1); + win_type = win_type{1}; + if strcmp(win_type, 'Kaiser') + win = specwin(win_type, 1, find(ao.getInfo('psd').plists, 'psll')); + else + win = specwin(win_type, 1); + end + olap = win.rov; + detrend = 0; + scale_type = 'C'; + n_pts = nsecs*fs/10; + + C = cohere(a_1, a_2, ... + plist('Win', win.type, 'olap', olap, 'Nfft', n_pts, 'order', detrend, 'type', scale_type)); + stest = true; + + catch err + disp(err.message) + stest = false; + end + % </SyntaxCode> + + % <AlgoDescription> + % + % 1) Check that the complex coherence equals 1 + + % </AlgoDescription> + + % <AlgoCode> + atest = true; + TOL = 1e-12; + + if stest + if any(abs((C.y - 1)) > TOL) + atest = false; + end + else + atest = false; + end + % </AlgoCode> + + % Return a result structure + result = utp_prepare_result(atest, stest, dbstack, mfilename); + end % END UTP_14 + + %% UTP_15 + + % <TestDescription> + % + % Tests symmetry properties of complex-coherence: + % 1) white noise produced from normal pdf, with a given mean value and + % sigma (distribution's 1st and 2nd orders) + % 2) white noise produced from normal pdf, with a given mean value and + % sigma (distribution's 1st and 2nd orders) + % 3) magnitude-squared coherence of the combination of white noise series + % 4) compare C(x,y) with 1 + % + + % </TestDescription> + function result = utp_15 + + % <SyntaxDescription> + % + % 1) Prepare the test tsdata: + % white noise from normal distribution + offset + % 2) Assign a random unit + % 3) Prepare the test tsdata: + % white noise from normal distribution + offset + % 4) Assign a random unit + % 5) magnitude-squared coherence of the combination of noise + % + % </SyntaxDescription> + + % <SyntaxCode> + try + + % Array of parameters to pick from + fs_list = [0.1;1;10]; + nsecs_list = [100:100:10000]'; + sigma_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; + mu_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; + + % Build time-series test data + + % Picks the values at random from the list + fs = utils.math.randelement(fs_list, 1); + nsecs = utils.math.randelement(nsecs_list, 1); + sigma_distr = utils.math.randelement(sigma_distr_list, 1); + mu_distr = utils.math.randelement(mu_distr_list, 1); + f = [1:5] / 100 * fs; + A = sigma_distr + sigma_distr*rand(1,1); + phi = 0 + 2*pi*rand(1,1); + + % White noise + type = 'Normal'; + a_n = ao(plist('waveform', 'noise', ... + 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); + a_const = ao(mu_distr); + % Sinusoidal signal + a_wave = ao(plist('waveform', 'sine-wave', ... + 'fs', fs, 'nsecs', nsecs, 'f', f, 'A', A, 'phi', phi)); + a_1 = a_n + a_wave; + % Linear combination (totally correlated time series) + a_2 = a_1 + a_const; + + % Set units and prefix from those supported + unit_list = unit.supportedUnits; + % remove the first empty unit '' from the list, because then is it + % possible that we add a prefix to an empty unit + unit_list = unit_list(2:end); + prefix_list = unit.supportedPrefixes; + a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); + a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); + + % Evaluate the complex coherence of the time-series data + win_list = specwin.getTypes; + win_type = utils.math.randelement(win_list(~strcmpi(win_list, 'levelledhanning')), 1); + win_type = win_type{1}; + if strcmp(win_type, 'Kaiser') + win = specwin(win_type, 1, find(ao.getInfo('psd').plists, 'psll')); + else + win = specwin(win_type, 1); + end + olap = win.rov; + detrend = 0; + scale_type = 'MS'; + n_pts = nsecs*fs/10; + + C = cohere(a_1, a_2, ... + plist('Win', win.type, 'olap', olap, 'Nfft', n_pts, 'order', detrend, 'type', scale_type)); + stest = true; + + catch err + disp(err.message) + stest = false; + end + % </SyntaxCode> + + % <AlgoDescription> + % + % 1) Check that the magnitude-squared coherence equals 1 + + % </AlgoDescription> + + % <AlgoCode> + atest = true; + + if stest + if ~eq(C.y, ones(size(C.y))) + atest = false; + end + else + atest = false; + end + % </AlgoCode> + + % Return a result structure + result = utp_prepare_result(atest, stest, dbstack, mfilename); + end % END UTP_15 + + %% UTP_16 + + % <TestDescription> + % + % Tests symmetry properties of complex-coherence: + % 1) white noise produced from normal pdf, with a given mean value and + % sigma (distribution's 1st and 2nd orders) + % 2) white noise produced from normal pdf, with a given mean value and + % sigma (distribution's 1st and 2nd orders) + % 3) magnitude-squared coherence M of the combination of white noise series + % 4) complex coherence C of the combination of white noise series + % 5) compare abs(C)^2 with M + % + + % </TestDescription> + function result = utp_16 + + % <SyntaxDescription> + % + % 1) Prepare the test tsdata: + % white noise from normal distribution + offset + % 2) Assign a random unit + % 3) Prepare the test tsdata: + % white noise from normal distribution + offset + % 4) Assign a random unit + % 5) magnitude-squared coherence of the combination of noise + % 6) complex coherence of the combination of noise + % + % </SyntaxDescription> + + % <SyntaxCode> + try + + % Array of parameters to pick from + fs_list = [0.1;1;10]; + nsecs_list = [100:100:10000]'; + sigma_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; + mu_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; + + % Build time-series test data + + % Picks the values at random from the list + fs = utils.math.randelement(fs_list, 1); + nsecs = utils.math.randelement(nsecs_list, 1); + sigma_distr = utils.math.randelement(sigma_distr_list, 1); + mu_distr = utils.math.randelement(mu_distr_list, 1); + f = [1:5] / 100 * fs; + A = sigma_distr + sigma_distr*rand(1,1); + phi = 0 + 2*pi*rand(1,1); + + % White noise + type = 'Normal'; + a_n = ao(plist('waveform', 'noise', ... + 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); + a_const = ao(mu_distr); + % Sinusoidal signal + a_wave = ao(plist('waveform', 'sine-wave', ... + 'fs', fs, 'nsecs', nsecs, 'f', f, 'A', A, 'phi', phi)); + a_1 = a_n + a_wave; + % Linear combination (totally correlated time series) + a_2 = a_1 + a_const; + + % Set units and prefix from those supported + unit_list = unit.supportedUnits; + % remove the first empty unit '' from the list, because then is it + % possible that we add a prefix to an empty unit + unit_list = unit_list(2:end); + prefix_list = unit.supportedPrefixes; + a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); + a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); + + % Evaluate the complex coherence of the time-series data + win_list = specwin.getTypes; + win_type = utils.math.randelement(win_list(~strcmpi(win_list, 'levelledhanning')), 1); + win_type = win_type{1}; + if strcmp(win_type, 'Kaiser') + win = specwin(win_type, 1, find(ao.getInfo('psd').plists, 'psll')); + else + win = specwin(win_type, 1); + end + olap = win.rov; + detrend = 0; + n_pts = nsecs*fs/10; + + M = cohere(a_1, a_2, ... + plist('Win', win.type, 'olap', olap, 'Nfft', n_pts, 'order', detrend, 'type', 'MS')); + C = cohere(a_1, a_2, ... + plist('Win', win.type, 'olap', olap, 'Nfft', n_pts, 'order', detrend, 'type', 'C')); + stest = true; + + catch err + disp(err.message) + stest = false; + end + % </SyntaxCode> + + % <AlgoDescription> + % + % 1) Check that the magnitude-squared coherence equals the square + % modulus of the complex coherence + + % </AlgoDescription> + + % <AlgoCode> + atest = true; + TOL = 1e-15; + + if stest + if any(abs(M.y - abs(C.y).^2) > TOL) + atest = false; + end + else + atest = false; + end + % </AlgoCode> + + % Return a result structure + result = utp_prepare_result(atest, stest, dbstack, mfilename); + end % END UTP_16 + + %% UTP_17 + + % <TestDescription> + % + % Tests handling of units: + % 1) white noise produced from normal pdf, with a given mean value and + % sigma (distribution's 1st and 2nd orders) + % 2) white noise produced from normal pdf, with a given mean value and + % sigma (distribution's 1st and 2nd orders) + % 3) complex coherence of the white noise series + % 4) compares the units of the input and output + % + + % </TestDescription> + function result = utp_17 + + % <SyntaxDescription> + % + % 1) Prepare the test tsdata: + % white noise from normal distribution + offset + % 2) Assign a random unit + % 3) Prepare the test tsdata: + % white noise from normal distribution + offset + % 4) Assign a random unit + % 5) complex cohere of the white noise + % + % </SyntaxDescription> + + % <SyntaxCode> + try + + % Build time-series test data + fs = 1; + nsecs = 86400; + sigma_distr_1 = 4.69e-12; + mu_distr_1 = -5.11e-14; + sigma_distr_2 = 6.04e-9; + mu_distr_2 = 1.5e-10; + + % White noise + type = 'Normal'; + + a_n = ao(plist('waveform', 'noise', ... + 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_1)); + a_const = ao(mu_distr_1); + a_1 = a_n + a_const; + + a_n = ao(plist('waveform', 'noise', ... + 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_2)); + a_const = ao(mu_distr_2); + a_2 = a_n + a_const; + + % Set units and prefix from those supported + unit_list = unit.supportedUnits; + % remove the first empty unit '' from the list, because then is it + % possible that we add a prefix to an empty unit + unit_list = unit_list(2:end); + prefix_list = unit.supportedPrefixes; + a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); + a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); + + % Evaluate the coherence of the time-series data + win = specwin('BH92'); + olap = win.rov; + detrend = 0; + scale_type = 'C'; + n_pts = nsecs*fs/10; + + C = cohere(a_1, a_2, ... + plist('Win', win.type, 'olap', olap, 'Nfft', n_pts, 'order', detrend, 'type', scale_type)); + + stest = true; + + catch err + disp(err.message) + stest = false; + end + % </SyntaxCode> + + % <AlgoDescription> + % + % 1) Check that (complex coherence yunits) equals [1] + % 2) Check that (complex coherence xunits) equals [Hz] + + % </AlgoDescription> + + % <AlgoCode> + atest = true; + + if stest + if ~eq(C.yunits, unit('')) || ~eq(C.xunits, unit('Hz')) + atest = false; + end + else + atest = false; + end + % </AlgoCode> + + % Return a result structure + result = utp_prepare_result(atest, stest, dbstack, mfilename); + end % END UTP_17 + + %% UTP_18 + + % <TestDescription> + % + % Tests handling of units: + % 1) white noise produced from normal pdf, with a given mean value and + % sigma (distribution's 1st and 2nd orders) + % 2) white noise produced from normal pdf, with a given mean value and + % sigma (distribution's 1st and 2nd orders) + % 3) magnitude-squared coherence of the white noise series + % 4) compares the units of the input and output + % + + % </TestDescription> + function result = utp_18 + + % <SyntaxDescription> + % + % 1) Prepare the test tsdata: + % white noise from normal distribution + offset + % 2) Assign a random unit + % 3) Prepare the test tsdata: + % white noise from normal distribution + offset + % 4) Assign a random unit + % 5) magnitude-squared cohere of the white noise + % + % </SyntaxDescription> + + % <SyntaxCode> + try + + % Build time-series test data + fs = 1; + nsecs = 86400; + sigma_distr_1 = 4.69e-12; + mu_distr_1 = -5.11e-14; + sigma_distr_2 = 6.04e-9; + mu_distr_2 = 1.5e-10; + + % White noise + type = 'Normal'; + + a_n = ao(plist('waveform', 'noise', ... + 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_1)); + a_const = ao(mu_distr_1); + a_1 = a_n + a_const; + + a_n = ao(plist('waveform', 'noise', ... + 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_2)); + a_const = ao(mu_distr_2); + a_2 = a_n + a_const; + + % Set units and prefix from those supported + unit_list = unit.supportedUnits; + % remove the first empty unit '' from the list, because then is it + % possible that we add a prefix to an empty unit + unit_list = unit_list(2:end); + prefix_list = unit.supportedPrefixes; + a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); + a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); + + % Evaluate the coherence of the time-series data + win = specwin('BH92'); + olap = win.rov; + detrend = 0; + scale_type = 'MS'; + n_pts = nsecs*fs/10; + + C = cohere(a_1, a_2, ... + plist('Win', win.type, 'olap', olap, 'Nfft', n_pts, 'order', detrend,'type', scale_type)); + + stest = true; + + catch err + disp(err.message) + stest = false; + end + % </SyntaxCode> + + % <AlgoDescription> + % + % 1) Check that (magnitude-squared coherence yunits) equals [1] + % 2) Check that (magnitude-squared coherence xunits) equals [Hz] + + % </AlgoDescription> + + % <AlgoCode> + atest = true; + + if stest + if ~eq(C.yunits, unit('')) || ~eq(C.xunits, unit('Hz')) + atest = false; + end + else + atest = false; + end + % </AlgoCode> + + % Return a result structure + result = utp_prepare_result(atest, stest, dbstack, mfilename); + end % END UTP_18 + + %% UTP_19 + + % <TestDescription> + % + % Tests that differently sized data sets are treated properly + % + % </TestDescription> + function result = utp_19 + + % <SyntaxDescription> + % + % Test that applying cohere works on two AOs. + % + % </SyntaxDescription> + + try + % <SyntaxCode> + % Construct two test AOs + nsecs = [10000:1:20000]; + fs = 1; + pl = plist('fs', fs, 'tsfcn', 'randn(size(t))'); + a1 = ao(pl.pset('nsecs', utils.math.randelement(nsecs, 1))); + a2 = ao(pl.pset('nsecs', utils.math.randelement(nsecs, 1))); + len_1 = a1.len; + len_2 = a2.len; + % Filter one time-series + f2 = miir(plist('type', 'bandpass', 'fs', fs, 'order', 3, 'fc', [.050 .25])); + a1f = filter(a1, plist('filter', f2)); + % Compute cohere + Nfft = -1; + win = 'Hanning'; + pl = plist('Nfft', Nfft, 'Win', win, 'order', -1); + out = cohere(a2,a1f,pl); + % </SyntaxCode> + stest = true; + catch err + disp(err.message) + stest = false; + end + + % <AlgoDescription> + % + % 1) Check that cohere used the length of the shortest ao. + % + % </AlgoDescription> + + atest = true; + if stest + % <AlgoCode> + % Compare the nfft with the length of the input data + + if out.x(2) ~= 1/min(len_1,len_2) + atest = false; + end + % </AlgoCode> + else + atest = false; + end + + % Return a result structure + result = utp_prepare_result(atest, stest, dbstack, mfilename); + end % END UTP_19 + + %% UTP_20 + + % <TestDescription> + % + % Tests that applying a single window the coherence is 1 + % + % </TestDescription> + function result = utp_20 + + % <SyntaxDescription> + % + % Test that applying cohere works on two AOs. + % + % </SyntaxDescription> + + try + % <SyntaxCode> + % Construct two test AOs + nsecs = [10000:100:20000]; + fs = 1; + pl = plist('fs', fs, 'tsfcn', 'randn(size(t))'); + a1 = ao(pl.pset('nsecs', utils.math.randelement(nsecs, 1))); + a2 = ao(pl.pset('nsecs', utils.math.randelement(nsecs, 1))); + % Filter one time-series + f2 = miir(plist('type', 'bandpass', 'fs', fs, 'order', 3, 'fc', [.050 .25])); + a1f = filter(a1, plist('filter', f2)); + % Compute cohere + Nfft = -1; + win = 'Hanning'; + pl = plist('Nfft', Nfft, 'Win', win, 'order', -1); + out_c = cohere(a2, a1f, pl.pset('type', 'C')); + out_ms = cohere(a2, a1f, pl.pset('type', 'MS')); + % </SyntaxCode> + stest = true; + catch err + disp(err.message) + stest = false; + end + + % <AlgoDescription> + % + % 1) Check that the calculated cohere is 1 + % + % </AlgoDescription> + + atest = true; + TOL = 1e-12; + if stest + % <AlgoCode> + % Compare the calculated cohere with 1 + + if any(abs(abs(out_c.y) - 1) > TOL) + atest = false; + end + if any(abs(abs(out_ms.y) - 1) > TOL) + atest = false; + end + % </AlgoCode> + else + atest = false; + end + + % Return a result structure + result = utp_prepare_result(atest, stest, dbstack, mfilename); + end % END UTP_20 + + %% UTP_21 + + % <TestDescription> + % + % Tests the possibility to set the number of averages rather than setting the Nfft: + % 1) white noise produced from normal pdf, with: + % a given mean value and sigma (distribution's 1st and 2nd order) + % 2) cohere of the noise, without detrending, random window, set number of + % averages + % 3) check the effective number of averages + % + + % </TestDescription> + function result = utp_21 + + % <SyntaxDescription> + % + % 1) Prepare the test tsdata: + % white noise from normal distribution + offset + % 2) cohere of the noise, without detrending, random window, set number of + % averages + % + % </SyntaxDescription> + + % <SyntaxCode> + try + % Array of parameters to pick from + fs_list = [0.1;1;2;5;10]; + nsecs_list = [2000:1000:10000]'; + sigma_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; + trend_0_list = [1e-6 2e-3 0.25 1:0.1:10]'; + + % Build time-series test data + + % Picks the values at random from the list + fs = utils.math.randelement(fs_list, 1); + nsecs = utils.math.randelement(nsecs_list, 1); + sigma_distr = utils.math.randelement(sigma_distr_list, 1); + trend_0 = utils.math.randelement(trend_0_list, 1); + + % White noise + type = 'Normal'; + a_n1 = ao(plist('waveform', 'noise', ... + 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); + a_n2 = ao(plist('waveform', 'noise', ... + 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); + + % Constant signal + a_c = ao(trend_0); + + % Total signals + a1 = a_n1 + a_c; + a2 = a_n2 + a_c; + + % Evaluate the complex coherence of the white noise time-series data + win_list = specwin.getTypes; + win_type = utils.math.randelement(win_list(~strcmpi(win_list, 'levelledhanning')), 1); + win_type = win_type{1}; + switch win_type + case 'Kaiser' + win = specwin(win_type, 1, find(ao.getInfo('psd').plists, 'psll')); + otherwise + win = specwin(win_type, 1); + end + + olap = win.rov; + detrend = 0; + n_pts = -1; + scale_type = 'C'; + navs = utils.math.randelement([1:100],1); + + % Evaluates the coherence asking for the number of averages + C = cohere(a1, a2, plist('Win', win.type, 'olap', olap, ... + 'Nfft', n_pts, 'order', detrend, 'type', scale_type, 'navs', navs)); + + stest = true; + + catch err + disp(err.message) + stest = false; + end + % </SyntaxCode> + + % <AlgoDescription> + % + % 1) Check that calculated navs are identical to those requested + % + % </AlgoDescription> + + % <AlgoCode> + atest = true; + + if stest + % Compare the navs written in the output object with the requested one + if ne(navs, C.data.navs) + if ne(find(C.hist.plistUsed, 'navs'), C.data.navs) + atest = false; + end + end + else + atest = false; + end + % </AlgoCode> + + % Return a result structure + result = utp_prepare_result(atest, stest, dbstack, mfilename); + end % END UTP_21 + + %% UTP_22 + + % <TestDescription> + % + % Tests the possibility to set the number of averages rather than setting the Nfft: + % 1) white noise produced from uniform pdf, with: + % a given mean value and sigma (distribution's 1st and 2nd order) + % 2) cohere of the noise, without detrending, random window, random navs + % 3) get the number of averages + % 4) get the nfft used + % 5) run cohere again, with the nfft used + % 6) compare the calculated objects + % + + % </TestDescription> + function result = utp_22 + + % <SyntaxDescription> + % + % 1) white noise produced from uniform pdf, with: + % a given mean value and sigma (distribution's 1st and 2nd order) + % 2) cohere of the noise, without detrending, random window, random navs + % 3) get the number of averages + % 4) get the nfft used + % 5) run cohere again, with the nfft used + % + % </SyntaxDescription> + + % <SyntaxCode> + try + % Array of parameters to pick from + fs_list = [0.1;1;2;5;10]; + nsecs_list = [20 100 1000:1000:10000]'; + sigma_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; + trend_0_list = [1e-6 2e-3 0.25 1:0.1:10]'; + + % Build time-series test data + + % Picks the values at random from the list + fs = utils.math.randelement(fs_list, 1); + nsecs = utils.math.randelement(nsecs_list, 1); + sigma_distr = utils.math.randelement(sigma_distr_list, 1); + trend_0 = utils.math.randelement(trend_0_list, 1); + + % White noise + type = 'Uniform'; + a_n1 = ao(plist('waveform', 'noise', ... + 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); + a_n2 = ao(plist('waveform', 'noise', ... + 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); + + % Constant signal + a_c = ao(trend_0); + + % Total signals + a1 = a_n1 + a_c; + a2 = a_n2 + a_c; + + % Evaluate the complex coherence of the white noise time-series data + win_list = specwin.getTypes; + win_type = utils.math.randelement(win_list(~strcmpi(win_list, 'levelledhanning')), 1); + win_type = win_type{1}; + switch win_type + case 'Kaiser' + win = specwin(win_type, 1, find(ao.getInfo('psd').plists, 'psll')); + otherwise + win = specwin(win_type, 1); + end + + olap = win.rov; + detrend = 0; + scale_type = 'MS'; + navs = fix(utils.math.randelement(logspace(0,log10(max(0,a1.len/10)),50),1)); + + % Calculates the coherence asking for the number of averages + C1 = cohere(a1, a2, plist('Win', win.type, 'olap', olap, ... + 'Nfft', -1, 'order', detrend, 'type', scale_type, ... + 'navs', navs)); + + % Calculates the coherence asking for the number of points just evaluated + C2 = cohere(a1, a2, plist('Win', win.type, 'olap', olap, ... + 'Nfft', find(C1.hist.plistUsed, 'Nfft'), 'order', detrend, 'type', scale_type)); + stest = true; + + catch err + disp(err.message) + stest = false; + end + % </SyntaxCode> + + % <AlgoDescription> + % + % 1) Check that calculated objects C1 and C2 are identical + % + % </AlgoDescription> + + % <AlgoCode> + atest = true; + + if stest + % Compare the output objects + if ne(C1,C2,ple3) + atest = false; + end + else + atest = false; + end + % </AlgoCode> + + % Return a result structure + result = utp_prepare_result(atest, stest, dbstack, mfilename); + end % END UTP_22 + + %% UTP_23 + + % <TestDescription> + % + % Tests the possibility to set the number of averages rather than setting the Nfft: + % 1) white noise produced from normal pdf, with: + % a given mean value and sigma (distribution's 1st and 2nd order) + % 2) cohere of the noise, without detrending, random window, random navs + % 3) get the number of averages + % 4) get the nfft used + % 5) run cohere again, with the nfft used + % 6) compare navs, nfft, coheres + % + + % </TestDescription> + function result = utp_23 + + % <SyntaxDescription> + % + % 1) white noise produced from normal pdf, with: + % a given mean value and sigma (distribution's 1st and 2nd order) + % 2) cohere of the noise, without detrending, random window, random navs + % 3) get the number of averages + % 4) get the nfft used + % 5) run cohere again, with the nfft used + % 6) run cohere again, with conflicting parameters, and verify it uses + % nfft rather than navs + % + % </SyntaxDescription> + + % <SyntaxCode> + try + % Array of parameters to pick from + fs_list = [0.1;1;2;5;10]; + nsecs_list = [1000:1000:10000]'; + sigma_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; + trend_0_list = [1e-6 2e-3 0.25 1:0.1:10]'; + + % Build time-series test data + + % Picks the values at random from the list + fs = utils.math.randelement(fs_list, 1); + nsecs = utils.math.randelement(nsecs_list, 1); + sigma_distr = utils.math.randelement(sigma_distr_list, 1); + trend_0 = utils.math.randelement(trend_0_list, 1); + + % White noise + type = 'Normal'; + a_n1 = ao(plist('waveform', 'noise', ... + 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); + a_n2 = ao(plist('waveform', 'noise', ... + 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); + + % Constant signal + a_c = ao(trend_0); + + % Total signals + a1 = a_n1 + a_c; + a2 = a_n2 + a_c; + + % Evaluate the complex coherence of the white noise time-series data + win_list = specwin.getTypes; + win_type = utils.math.randelement(win_list(~strcmpi(win_list, 'levelledhanning')), 1); + win_type = win_type{1}; + switch win_type + case 'Kaiser' + win = specwin(win_type, 1, find(ao.getInfo('psd').plists, 'psll')); + otherwise + win = specwin(win_type, 1); + end + + olap = win.rov; + detrend = 0; + scale_type = 'C'; + navs = fix(utils.math.randelement(logspace(0,log10(max(a1.len/10,0)),50),1)); + + % Calculates the coherence asking for the number of averages + C1 = cohere(a1, a2, plist('Win', win.type, 'olap', olap, ... + 'Nfft', -1, 'order', detrend, 'type', scale_type, ... + 'navs', navs)); + + npts_2 = find(C1.hist.plistUsed, 'Nfft'); + % Calculates the coherence asking for the number of points + C2 = cohere(a1, a2, plist('Win', win.type, 'olap', olap, ... + 'Nfft', npts_2, 'order', detrend, 'type', scale_type)); + + npts_3 = fix(npts_2/2); + % Calculates the coherence asking for the number of points AND the window length + C3 = cohere(a1, a2, plist('Win', win.type, 'olap', olap, ... + 'Nfft', npts_3, ... + 'order', detrend, 'type', scale_type, ... + 'navs', navs)); + + stest = true; + + catch err + disp(err.message) + stest = false; + end + % </SyntaxCode> + + % <AlgoDescription> + % + % 1) Check that calculated objects C1 and C2 are identical + % 2) Check that C3 used different values + % + % </AlgoDescription> + + % <AlgoCode> + atest = true; + + if stest + % Compare the navs written in the output object with the requested one + if ne(C1,C2,ple3) || ... + ne(find(C3.hist.plistUsed, 'Nfft'), npts_3) || eq(C3.data.navs, navs) + atest = false; + end + else + atest = false; + end + % </AlgoCode> + + % Return a result structure + result = utp_prepare_result(atest, stest, dbstack, mfilename); + end % END UTP_23 + + %% UTP_24 + + % <TestDescription> + % + % Tests that the cohere method agrees with MATLAB's mscohere when + % configured to use the same parameters. + % + % </TestDescription> + function result = utp_24 + + % <SyntaxDescription> + % + % Test that the applying cohere works on two AOs. + % + % </SyntaxDescription> + + try + % <SyntaxCode> + % Construct two test AOs + nsecs = 10; + fs = 1000; + pl = plist('nsecs', nsecs, 'fs', fs, 'tsfcn', 'randn(size(t))'); + a1 = ao(pl); a2 = ao(pl); + % Filter one time-series + f2 = miir(plist('type', 'bandpass', 'fs', fs, 'order', 3, 'fc', [50 250])); + a1f = filter(a1, plist('filter', f2)); + % make some cross-power + a4 = a1f+a2; a4.setName; + % Create the transpose of a4 to check the output data shape + a4 = a4.'; + % Compute coherence + Nfft = 2*fs; + % Use different windows size as Nfft + win = specwin('Hanning', 1000); + pl = plist('Nfft', Nfft, 'Win', win.type, 'order', 0, 'type', 'MS'); + out = cohere(a4,a1,pl); + % </SyntaxCode> + stest = true; + catch err + disp(err.message) + stest = false; + end + + % <AlgoDescription> + % + % 1) Check that output agrees with the output of MATLAB's mscohere. + % 2) Check that the shape of the output data is equal to the input data + % + % </AlgoDescription> + + atest = true; + if stest + % <AlgoCode> + TOL = 1e-12; + + % Redesign the window + win = specwin('Hanning', Nfft); + % Compute coherence using MATLAB's cohere + [cxy, f] = mscohere(a4.y, a1.y, win.win, Nfft/2, Nfft, a1.fs); + if any(abs(cxy(4:end)-out.y(4:end))>TOL), atest = false; end + if ne(f, out.x), atest = false; end + if ne(out, out, ple2), atest = false; end + % Check the data shape + if size(a4.y,1) == 1 + if size(out.y,1) ~= 1, atest = false; end + else + if size(out.y,2) ~= 1, atest = false; end + end + % </AlgoCode> + else + atest = false; + end + + % Return a result structure + result = utp_prepare_result(atest, stest, dbstack, mfilename); + end % END UTP_24 + + %% UTP_25 + + % <TestDescription> + % + % Tests handling of units: + % 1) white noise produced from normal pdf, with a given mean value and + % sigma (distribution's 1st and 2nd orders) + % 2) white noise produced from normal pdf, with a given mean value and + % sigma (distribution's 1st and 2nd orders) + % 3) complex coherence of the white noise series + % 4) compares the units of the input and output + % + + % </TestDescription> + function result = utp_25 + + % <SyntaxDescription> + % + % 1) Prepare the test tsdata: + % white noise from normal distribution + offset + % 2) Assign a random unit + % 3) Prepare the test tsdata: + % white noise from normal distribution + offset + % 4) Assign a random unit + % 5) complex cohere of the white noise + % + % </SyntaxDescription> + + % <SyntaxCode> + try + + % Build time-series test data + fs = 1; + nsecs = 86400; + sigma_distr_1 = 4.69e-12; + mu_distr_1 = -5.11e-14; + sigma_distr_2 = 6.04e-9; + mu_distr_2 = 1.5e-10; + + % White noise + type = 'Normal'; + + a_n = ao(plist('waveform', 'noise', ... + 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_1)); + a_const = ao(mu_distr_1); + a_1 = a_n + a_const; + + a_n = ao(plist('waveform', 'noise', ... + 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_2)); + a_const = ao(mu_distr_2); + a_2 = a_n + a_const; + + % Set units and prefix from those supported + unit_list = unit.supportedUnits; + % remove the first empty unit '' from the list, because then is it + % possible that we add a prefix to an empty unit + unit_list = unit_list(2:end); + prefix_list = unit.supportedPrefixes; + a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); + a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); + + % Evaluate the coherence of the time-series data + win = 'Kaiser'; + psll = utils.math.randelement([10:10:200], 1); + detrend = 0; + scale_type = 'C'; + n_pts = nsecs*fs/10; + + C = cohere(a_1, a_2, ... + plist('Win', win, 'psll', psll, 'Nfft', n_pts, 'order', detrend, 'type', scale_type)); + + stest = true; + + catch err + disp(err.message) + stest = false; + end + % </SyntaxCode> + + % <AlgoDescription> + % + % 1) Check that (complex coherence yunits) equals [1] + % 2) Check that (complex coherence xunits) equals [Hz] + + % </AlgoDescription> + + % <AlgoCode> + atest = true; + + if stest + if ~eq(C.yunits, unit('')) || ~eq(C.xunits, unit('Hz')) + atest = false; + end + else + atest = false; + end + % </AlgoCode> + + % Return a result structure + result = utp_prepare_result(atest, stest, dbstack, mfilename); + end % END UTP_25 + + %% UTP_26 + + % <TestDescription> + % + % Tests handling of units: + % 1) white noise produced from normal pdf, with a given mean value and + % sigma (distribution's 1st and 2nd orders) + % 2) white noise produced from normal pdf, with a given mean value and + % sigma (distribution's 1st and 2nd orders) + % 3) complex coherence of the white noise series + % 4) compares the units of the input and output + % + + % </TestDescription> + function result = utp_26 + + % <SyntaxDescription> + % + % 1) Prepare the test tsdata: + % white noise from normal distribution + offset + % 2) Assign a random unit + % 3) Prepare the test tsdata: + % white noise from normal distribution + offset + % 4) Assign a random unit + % 5) complex cohere of the white noise + % + % </SyntaxDescription> + + % <SyntaxCode> + try + + % Build time-series test data + fs = 1; + nsecs = 86400; + sigma_distr_1 = 4.69e-12; + mu_distr_1 = -5.11e-14; + sigma_distr_2 = 6.04e-9; + mu_distr_2 = 1.5e-10; + + % White noise + type = 'Normal'; + + a_n = ao(plist('waveform', 'noise', ... + 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_1)); + a_const = ao(mu_distr_1); + a_1 = a_n + a_const; + + a_n = ao(plist('waveform', 'noise', ... + 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_2)); + a_const = ao(mu_distr_2); + a_2 = a_n + a_const; + + % Set units and prefix from those supported + unit_list = unit.supportedUnits; + % remove the first empty unit '' from the list, because then is it + % possible that we add a prefix to an empty unit + unit_list = unit_list(2:end); + prefix_list = unit.supportedPrefixes; + a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); + a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); + + % Evaluate the coherence of the time-series data + win = 'Kaiser'; + psll = utils.math.randelement([10:10:200], 1); + detrend = 0; + scale_type = 'C'; + n_pts = nsecs*fs/10; + + C = cohere(a_1, a_2, ... + plist('Win', win, 'psll', psll, 'Nfft', n_pts, 'order', detrend, 'type', scale_type)); + + stest = true; + + catch err + disp(err.message) + stest = false; + end + % </SyntaxCode> + + % <AlgoDescription> + % + % 1) Check that (complex coherence yunits) equals [1] + % 2) Check that (complex coherence xunits) equals [Hz] + + % </AlgoDescription> + + % <AlgoCode> + atest = true; + + if stest + if ~eq(C.yunits, unit('')) || ~eq(C.xunits, unit('Hz')) + atest = false; + end + else + atest = false; + end + % </AlgoCode> + + % Return a result structure + result = utp_prepare_result(atest, stest, dbstack, mfilename); + end % END UTP_26 + + %% UTP_30 + + % <TestDescription> + % + % Tests handling of special cases: + % 1) white noise produced from normal pdf, with a given mean value and + % sigma (distribution's 1st and 2nd orders) + % 2) the same noise series + % 3) cohere of the white noise series + % 4) compares the output to unity + % + + % </TestDescription> + function result = utp_30 + + % <SyntaxDescription> + % + % 1) Prepare the test tsdata: + % white noise from normal distribution + offset + % 2) Assign a random unit + % 3) Prepare the test tsdata: + % the same data as 1) and 2) + % 4) cohere of the series + % + % </SyntaxDescription> + + % <SyntaxCode> + try + + % Build time-series test data + fs = 1; + nsecs = 86400; + sigma_distr_1 = 4.69e-12; + mu_distr_1 = -5.11e-14; + + % White noise + type = 'Normal'; + + a_n = ao(plist('waveform', 'noise', ... + 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_1)); + a_const = ao(mu_distr_1); + a_1 = a_n + a_const; + + % Set units and prefix from those supported + unit_list = unit.supportedUnits; + % remove the first empty unit '' from the list, because then is it + % possible that we add a prefix to an empty unit + unit_list = unit_list(2:end); + prefix_list = unit.supportedPrefixes; + a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); + + % Build the second object as a copy of the first + a_2 = a_1; + + % Evaluate the cohere of the time-series data + win = specwin('BH92'); + olap = win.rov; + detrend = 0; + n_pts = nsecs*fs/10; + scale_type = 'C'; + + C = cohere(a_1, a_2, ... + plist('Win', win, 'Nfft', n_pts, 'order', detrend, 'type', scale_type, 'olap', olap)); + + stest = true; + + catch err + disp(err.message) + stest = false; + end + % </SyntaxCode> + + % <AlgoDescription> + % + % 1) Check that calculated cohere equals 1 + + % </AlgoDescription> + + % <AlgoCode> + atest = true; + + if stest + if sum(ne(C.y, 1)) + atest = false; + end + else + atest = false; + end + % </AlgoCode> + + % Return a result structure + result = utp_prepare_result(atest, stest, dbstack, mfilename); + end % END UTP_30 + +end