diff m-toolbox/classes/@ao/wosa.m @ 43:bc767aaa99a8

CVS Update
author Daniele Nicolodi <nicolodi@science.unitn.it>
date Tue, 06 Dec 2011 11:09:25 +0100
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/m-toolbox/classes/@ao/wosa.m	Tue Dec 06 11:09:25 2011 +0100
@@ -0,0 +1,317 @@
+% WOSA implements Welch's overlaped segmented averaging algorithm with
+% segment detrending and variance estimation.
+% 
+% [pxx, f, info] = wosa(x,type,pl)
+% [pxx, f, info] = wosa(x,y,type,pl)
+%
+% INPUTS:      x    - input analysis objects
+%              y    - input analysis objects
+%              type - type of estimation:
+%                       'psd'      - compute Power Spectral Denstiy (PSD)
+%                       'cpsd'     - compute cross-spectral density
+%                       'tfe'      - estimate transfer function between inputs
+%                       'mscohere' - estimate magnitude-squared cross-coherence
+%                       'cohere'   - estimate complex cross-coherence
+%              pl   - input parameter list
+%
+% PARAMETERS: 'Win'   - a specwin window object [default: Kaiser -200dB psll]
+%             'Olap' - segment percent overlap [default: taken from window function]
+%             'Nfft'  - number of samples in each fft [default: length of input data]
+%             'Scale' - one of
+%                                'ASD' - amplitude spectral density
+%                                'PSD' - power spectral density [default]
+%                                'AS'  - amplitude spectrum
+%                                'PS'  - power spectrum
+%                       * applies only to spectrum 'Type' 'psd'
+%             'Order' - order of segment detrending
+%                        -1 - no detrending
+%                         0 - subtract mean [default]
+%                         1 - subtract linear fit
+%                         N - subtract fit of polynomial, order N
+%
+% Version: $Id: wosa.m,v 1.5 2011/12/02 07:08:11 hewitson Exp $
+%
+
+function varargout = wosa(varargin)
+  import utils.const.*
+  
+  % Process inputs
+  if nargin == 3
+    a  = varargin{1};
+    esttype = varargin{2};
+    pl = varargin{3};
+    inunits = a.data.yunits;
+    L = a.len;
+  else
+    a  = varargin{1};
+    b  = varargin{2};
+    esttype = varargin{3};
+    pl = varargin{4};
+    if a.data.fs ~= b.data.fs
+      error('The two time-series have different sample rates.');
+    end
+    inunits = b.data.yunits / a.data.yunits;
+    L = min(a.len, b.len);
+  end
+  
+  % Parse inputs
+  win          = find(pl, 'Win');
+  nfft         = find(pl, 'Nfft');
+  percentOlap  = find(pl, 'Olap')/100;
+  scale        = find(pl, 'scale');
+  xOlap        = round(percentOlap*nfft);
+  detrendOrder = find(pl, 'order');
+  fs           = a.fs;
+  winVals      = win.win.'; % because we always get a column from ao.y
+  
+  % Compute segment details
+  
+  nSegments = fix((L - xOlap)./(nfft - xOlap));
+  utils.helper.msg(msg.PROC3, 'N segment: %d', nfft);
+  utils.helper.msg(msg.PROC3, 'N overlap: %d', xOlap);
+  utils.helper.msg(msg.PROC3, 'N segments: %d', nSegments);
+  
+  % Compute start and end indices of each segment
+  segmentStep = nfft-xOlap;
+  segmentStarts = 1:segmentStep:nSegments*segmentStep;
+  segmentEnds   = segmentStarts+nfft-1;
+  
+  % Estimate the averaged periodogram for the desired quantity
+  switch lower(esttype)
+    case 'psd'
+      % Compute averaged periodogram
+      [Sxx, Svxx] = psdPeriodogram(a, winVals, nSegments, segmentStarts, segmentEnds, detrendOrder);
+    case 'cpsd'
+      [Sxx, Svxx] = cpsdPeriodogram(a, b, winVals, nSegments, segmentStarts, segmentEnds, detrendOrder);
+    case 'tfe'
+      [Sxx, Sxy, Syy] = tfePeriodogram(a, b, winVals, nSegments, segmentStarts, segmentEnds, detrendOrder);
+    case {'mscohere','cohere'}
+      [Sxx, Sxy, Syy] = tfePeriodogram(a, b, winVals, nSegments, segmentStarts, segmentEnds, detrendOrder);
+    otherwise
+      error('Unknown estimation type %s', esttype);
+  end
+  
+  % Scale to PSD
+  switch lower(esttype)
+    case {'psd','cpsd'}
+      [P, Pvxx] = scaleToPSD(Sxx, Svxx, nfft, fs);
+      % the 1/nSegments factor should come after welchscale if we don't
+      % want to apply sqrt() to it.
+      % We correct for that here. It is only needed for 'asd','as' in
+      % psd/cpsd, the other cases go always through 'PSD'.
+      if (strcmpi(scale,'PSD') || strcmpi(scale,'PS'))
+        dP = Pvxx;
+      elseif (strcmpi(scale,'ASD') || strcmpi(scale,'AS'))
+        dP = Pvxx/nSegments;
+      else
+        error('### Unknown scale')
+      end
+    case 'tfe'
+      % Compute the 1-sided or 2-sided PSD [Power/freq] or mean-square [Power].
+      % Also, corresponding freq vector and freq units.
+      % In the Cross PSD, the frequency vector and xunits are not used.
+      Pxx = scaleToPSD(Sxx, [], nfft, fs);
+      Pxy = scaleToPSD(Sxy, [], nfft, fs);
+      Pyy = scaleToPSD(Syy, [], nfft, fs);
+      % mean and std
+      P = Pxy ./ Pxx; % Txy
+      if nSegments == 1
+        dP =[];
+      else
+        dP = (nSegments/(nSegments-1)^2)*(Pyy./Pxx).*(1 - (abs(Pxy).^2)./(Pxx.*Pyy));
+      end
+    case 'mscohere'
+      % Magnitude Square Coherence estimate.
+      % Auto PSD for 2nd input vector. The freq vector & xunits are not
+      % used.
+      Pxx = scaleToPSD(Sxx, [], nfft, fs);
+      Pxy = scaleToPSD(Sxy, [], nfft, fs);
+      Pyy = scaleToPSD(Syy, [], nfft, fs);
+      % mean and std
+      P = (abs(Pxy).^2)./(Pxx.*Pyy); % Magnitude-squared coherence
+      dP = (2*P/nSegments).*(1-P).^2;
+    case 'cohere'
+      % Complex Coherence estimate.
+      % Auto PSD for 2nd input vector. The freq vector & xunits are not
+      % used.
+      Pxx = scaleToPSD(Sxx, [], nfft, fs);
+      Pxy = scaleToPSD(Sxy, [], nfft, fs);
+      Pyy = scaleToPSD(Syy, [], nfft, fs);
+      P = Pxy./sqrt(Pxx.*Pyy); % Complex coherence
+      dP = (2*abs(P)/nSegments).*(1-abs(P)).^2;
+  
+  end
+  
+  % Compute frequencies
+  freqs = psdfreqvec('npts', nfft,'Fs', fs, 'Range', 'half').';
+  
+  % Scale to required units
+  [Pxx, dP, info] = utils.math.welchscale(P, dP, winVals, fs, scale, inunits);
+  info.navs = nSegments;
+  
+  if nSegments ==1
+    dev = [];
+  else
+    dev = sqrt(dP);
+  end
+  
+  % Set outputs
+  varargout = {Pxx, freqs, info, dev};
+    
+end
+
+% scale averaged periodogram to PSD
+function [Pxx, Pvxx] = scaleToPSD(Sxx, Svxx, nfft, fs)
+  
+  % Take 1-sided spectrum which means we double the power in the
+  % appropriate bins
+  if rem(nfft,2),
+    indices = 1:(nfft+1)/2;  % ODD
+    Sxx1sided = Sxx(indices,:);
+    % double the power except for the DC bin
+    Sxx = [Sxx1sided(1,:); 2*Sxx1sided(2:end,:)];  
+    if ~isempty(Svxx)
+      Svxx1sided = Svxx(indices,:);
+      Svxx = [Svxx1sided(1,:); 4*Svxx1sided(2:end,:)];
+    end
+  else
+    indices = 1:nfft/2+1;    % EVEN
+    Sxx1sided = Sxx(indices,:);
+    % Double power except the DC bin and the Nyquist bin
+    Sxx = [Sxx1sided(1,:); 2*Sxx1sided(2:end-1,:); Sxx1sided(end,:)];
+    if ~isempty(Svxx)
+      Svxx1sided = Svxx(indices,:); % Take only [0,pi] or [0,pi)
+      Svxx = [Svxx1sided(1,:); 4*Svxx1sided(2:end-1,:); Svxx1sided(end,:)];
+    end
+  end
+
+  % Now scale to PSD
+  Pxx   = Sxx./fs;
+  Pvxx  = Svxx./fs^2;
+  
+end
+
+% compute tfe
+function [Sxx, Sxy, Syy] = tfePeriodogram(x, y, winVals, nSegments, segmentStarts, segmentEnds, detrendOrder)
+  
+  nfft = segmentEnds(1);
+  Sxx = zeros(nfft,1); % Initialize Sxx
+  Sxy = zeros(nfft,1); % Initialize Sxy
+  Syy = zeros(nfft,1); % Initialize Syy
+  % loop over segments
+  for ii = 1:nSegments
+    if detrendOrder < 0
+      xseg = x.y(segmentStarts(ii):segmentEnds(ii));
+      yseg = y.y(segmentStarts(ii):segmentEnds(ii));
+    else
+      [xseg,coeffs] = ltpda_polyreg(x.y(segmentStarts(ii):segmentEnds(ii)), detrendOrder);
+      [yseg,coeffs] = ltpda_polyreg(y.y(segmentStarts(ii):segmentEnds(ii)), detrendOrder);
+    end
+
+    % Compute periodograms
+    Sxxk = wosa_periodogram(xseg, [], winVals, nfft);
+    Sxyk = wosa_periodogram(yseg, xseg, winVals, nfft);
+    Syyk = wosa_periodogram(yseg, [], winVals, nfft);
+      
+    Sxx = Sxx + Sxxk;
+    Sxy = Sxy + Sxyk;
+    Syy = Syy + Syyk;
+    % don't need to be divided by k because only rations are used here
+  end
+  
+end
+
+% compute cpsd
+function [Sxx, Svxx] = cpsdPeriodogram(x, y, winVals, nSegments, segmentStarts, segmentEnds, detrendOrder)
+  
+  Mnxx = 0; 
+  Mn2xx = 0;
+  nfft = segmentEnds(1);
+  for ii = 1:nSegments
+    if detrendOrder < 0
+      xseg = x.y(segmentStarts(ii):segmentEnds(ii));
+      yseg = y.y(segmentStarts(ii):segmentEnds(ii));
+    else
+      [xseg,coeffs] = ltpda_polyreg(x.y(segmentStarts(ii):segmentEnds(ii)), detrendOrder);
+      [yseg,coeffs] = ltpda_polyreg(y.y(segmentStarts(ii):segmentEnds(ii)), detrendOrder);
+    end
+    
+    % Compute periodogram
+    Sxxk = wosa_periodogram(xseg, yseg, winVals, nfft);
+    
+    % Welford's algorithm to update mean and variance
+    Qxx = Sxxk - Mnxx;
+    Mnxx = Mnxx +Qxx/ii;
+    Mn2xx = Mn2xx + abs(Qxx.*conj(Sxxk - Mnxx));
+  end
+  Sxx = Mnxx;
+  if nSegments ==1
+    Svxx = [];
+  else
+    Svxx = Mn2xx/(nSegments-1)/nSegments;
+  end
+  
+  
+end
+
+% compute psd
+function [Sxx, Svxx] = psdPeriodogram(x, winVals, nSegments, segmentStarts, segmentEnds, detrendOrder)
+  
+  Mnxx = 0; 
+  Mn2xx = 0;
+  nfft = segmentEnds(1);
+  % Loop over the segments
+  for ii = 1:nSegments
+    % Detrend if desired
+    if detrendOrder < 0
+      seg = x.y(segmentStarts(ii):segmentEnds(ii));
+    else
+      [seg,coeffs] = ltpda_polyreg(x.y(segmentStarts(ii):segmentEnds(ii)), detrendOrder);
+    end
+    % Compute periodogram
+    Sxxk = wosa_periodogram(seg, [], winVals,nfft);
+    % Welford's algorithm for updating mean and variance
+    if ii == 1
+      Mnxx = Sxxk;
+    else
+      Qxx = Sxxk - Mnxx;
+      Mnxx = Mnxx + Qxx/ii;
+      Mn2xx = Mn2xx + Qxx.*(Sxxk - Mnxx);
+    end
+  end
+  Sxx = Mnxx;
+  if nSegments == 1
+    Svxx = [];
+  else
+    Svxx = Mn2xx/(nSegments-1)/nSegments;
+  end
+  
+end
+
+% Scaled periodogram of one or two input signals
+function Sxx = wosa_periodogram(x, y, win, nfft)
+  
+  % window data
+  xwin = x.*win;
+  isCross = false;
+  if ~isempty(y)
+    ywin = y.*win;
+    isCross = true;
+  end
+  
+  % take fft
+  X = fft(xwin, nfft);
+  if isCross
+    Y = fft(ywin, nfft);
+  end
+  
+  % Compute scale factor to compensate for the window power
+  K = win'*win;
+  
+  % Compute scaled power
+  Sxx = X.*conj(X)/K;
+  if isCross,
+    Sxx = X.*conj(Y)/K;
+  end  
+  
+end