Mercurial > hg > ltpda
diff m-toolbox/classes/@ao/wosa.m @ 43:bc767aaa99a8
CVS Update
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Tue, 06 Dec 2011 11:09:25 +0100 (2011-12-06) |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/classes/@ao/wosa.m Tue Dec 06 11:09:25 2011 +0100 @@ -0,0 +1,317 @@ +% WOSA implements Welch's overlaped segmented averaging algorithm with +% segment detrending and variance estimation. +% +% [pxx, f, info] = wosa(x,type,pl) +% [pxx, f, info] = wosa(x,y,type,pl) +% +% INPUTS: x - input analysis objects +% y - input analysis objects +% type - type of estimation: +% 'psd' - compute Power Spectral Denstiy (PSD) +% 'cpsd' - compute cross-spectral density +% 'tfe' - estimate transfer function between inputs +% 'mscohere' - estimate magnitude-squared cross-coherence +% 'cohere' - estimate complex cross-coherence +% pl - input parameter list +% +% PARAMETERS: 'Win' - a specwin window object [default: Kaiser -200dB psll] +% 'Olap' - segment percent overlap [default: taken from window function] +% 'Nfft' - number of samples in each fft [default: length of input data] +% 'Scale' - one of +% 'ASD' - amplitude spectral density +% 'PSD' - power spectral density [default] +% 'AS' - amplitude spectrum +% 'PS' - power spectrum +% * applies only to spectrum 'Type' 'psd' +% 'Order' - order of segment detrending +% -1 - no detrending +% 0 - subtract mean [default] +% 1 - subtract linear fit +% N - subtract fit of polynomial, order N +% +% Version: $Id: wosa.m,v 1.5 2011/12/02 07:08:11 hewitson Exp $ +% + +function varargout = wosa(varargin) + import utils.const.* + + % Process inputs + if nargin == 3 + a = varargin{1}; + esttype = varargin{2}; + pl = varargin{3}; + inunits = a.data.yunits; + L = a.len; + else + a = varargin{1}; + b = varargin{2}; + esttype = varargin{3}; + pl = varargin{4}; + if a.data.fs ~= b.data.fs + error('The two time-series have different sample rates.'); + end + inunits = b.data.yunits / a.data.yunits; + L = min(a.len, b.len); + end + + % Parse inputs + win = find(pl, 'Win'); + nfft = find(pl, 'Nfft'); + percentOlap = find(pl, 'Olap')/100; + scale = find(pl, 'scale'); + xOlap = round(percentOlap*nfft); + detrendOrder = find(pl, 'order'); + fs = a.fs; + winVals = win.win.'; % because we always get a column from ao.y + + % Compute segment details + + nSegments = fix((L - xOlap)./(nfft - xOlap)); + utils.helper.msg(msg.PROC3, 'N segment: %d', nfft); + utils.helper.msg(msg.PROC3, 'N overlap: %d', xOlap); + utils.helper.msg(msg.PROC3, 'N segments: %d', nSegments); + + % Compute start and end indices of each segment + segmentStep = nfft-xOlap; + segmentStarts = 1:segmentStep:nSegments*segmentStep; + segmentEnds = segmentStarts+nfft-1; + + % Estimate the averaged periodogram for the desired quantity + switch lower(esttype) + case 'psd' + % Compute averaged periodogram + [Sxx, Svxx] = psdPeriodogram(a, winVals, nSegments, segmentStarts, segmentEnds, detrendOrder); + case 'cpsd' + [Sxx, Svxx] = cpsdPeriodogram(a, b, winVals, nSegments, segmentStarts, segmentEnds, detrendOrder); + case 'tfe' + [Sxx, Sxy, Syy] = tfePeriodogram(a, b, winVals, nSegments, segmentStarts, segmentEnds, detrendOrder); + case {'mscohere','cohere'} + [Sxx, Sxy, Syy] = tfePeriodogram(a, b, winVals, nSegments, segmentStarts, segmentEnds, detrendOrder); + otherwise + error('Unknown estimation type %s', esttype); + end + + % Scale to PSD + switch lower(esttype) + case {'psd','cpsd'} + [P, Pvxx] = scaleToPSD(Sxx, Svxx, nfft, fs); + % the 1/nSegments factor should come after welchscale if we don't + % want to apply sqrt() to it. + % We correct for that here. It is only needed for 'asd','as' in + % psd/cpsd, the other cases go always through 'PSD'. + if (strcmpi(scale,'PSD') || strcmpi(scale,'PS')) + dP = Pvxx; + elseif (strcmpi(scale,'ASD') || strcmpi(scale,'AS')) + dP = Pvxx/nSegments; + else + error('### Unknown scale') + end + case 'tfe' + % Compute the 1-sided or 2-sided PSD [Power/freq] or mean-square [Power]. + % Also, corresponding freq vector and freq units. + % In the Cross PSD, the frequency vector and xunits are not used. + Pxx = scaleToPSD(Sxx, [], nfft, fs); + Pxy = scaleToPSD(Sxy, [], nfft, fs); + Pyy = scaleToPSD(Syy, [], nfft, fs); + % mean and std + P = Pxy ./ Pxx; % Txy + if nSegments == 1 + dP =[]; + else + dP = (nSegments/(nSegments-1)^2)*(Pyy./Pxx).*(1 - (abs(Pxy).^2)./(Pxx.*Pyy)); + end + case 'mscohere' + % Magnitude Square Coherence estimate. + % Auto PSD for 2nd input vector. The freq vector & xunits are not + % used. + Pxx = scaleToPSD(Sxx, [], nfft, fs); + Pxy = scaleToPSD(Sxy, [], nfft, fs); + Pyy = scaleToPSD(Syy, [], nfft, fs); + % mean and std + P = (abs(Pxy).^2)./(Pxx.*Pyy); % Magnitude-squared coherence + dP = (2*P/nSegments).*(1-P).^2; + case 'cohere' + % Complex Coherence estimate. + % Auto PSD for 2nd input vector. The freq vector & xunits are not + % used. + Pxx = scaleToPSD(Sxx, [], nfft, fs); + Pxy = scaleToPSD(Sxy, [], nfft, fs); + Pyy = scaleToPSD(Syy, [], nfft, fs); + P = Pxy./sqrt(Pxx.*Pyy); % Complex coherence + dP = (2*abs(P)/nSegments).*(1-abs(P)).^2; + + end + + % Compute frequencies + freqs = psdfreqvec('npts', nfft,'Fs', fs, 'Range', 'half').'; + + % Scale to required units + [Pxx, dP, info] = utils.math.welchscale(P, dP, winVals, fs, scale, inunits); + info.navs = nSegments; + + if nSegments ==1 + dev = []; + else + dev = sqrt(dP); + end + + % Set outputs + varargout = {Pxx, freqs, info, dev}; + +end + +% scale averaged periodogram to PSD +function [Pxx, Pvxx] = scaleToPSD(Sxx, Svxx, nfft, fs) + + % Take 1-sided spectrum which means we double the power in the + % appropriate bins + if rem(nfft,2), + indices = 1:(nfft+1)/2; % ODD + Sxx1sided = Sxx(indices,:); + % double the power except for the DC bin + Sxx = [Sxx1sided(1,:); 2*Sxx1sided(2:end,:)]; + if ~isempty(Svxx) + Svxx1sided = Svxx(indices,:); + Svxx = [Svxx1sided(1,:); 4*Svxx1sided(2:end,:)]; + end + else + indices = 1:nfft/2+1; % EVEN + Sxx1sided = Sxx(indices,:); + % Double power except the DC bin and the Nyquist bin + Sxx = [Sxx1sided(1,:); 2*Sxx1sided(2:end-1,:); Sxx1sided(end,:)]; + if ~isempty(Svxx) + Svxx1sided = Svxx(indices,:); % Take only [0,pi] or [0,pi) + Svxx = [Svxx1sided(1,:); 4*Svxx1sided(2:end-1,:); Svxx1sided(end,:)]; + end + end + + % Now scale to PSD + Pxx = Sxx./fs; + Pvxx = Svxx./fs^2; + +end + +% compute tfe +function [Sxx, Sxy, Syy] = tfePeriodogram(x, y, winVals, nSegments, segmentStarts, segmentEnds, detrendOrder) + + nfft = segmentEnds(1); + Sxx = zeros(nfft,1); % Initialize Sxx + Sxy = zeros(nfft,1); % Initialize Sxy + Syy = zeros(nfft,1); % Initialize Syy + % loop over segments + for ii = 1:nSegments + if detrendOrder < 0 + xseg = x.y(segmentStarts(ii):segmentEnds(ii)); + yseg = y.y(segmentStarts(ii):segmentEnds(ii)); + else + [xseg,coeffs] = ltpda_polyreg(x.y(segmentStarts(ii):segmentEnds(ii)), detrendOrder); + [yseg,coeffs] = ltpda_polyreg(y.y(segmentStarts(ii):segmentEnds(ii)), detrendOrder); + end + + % Compute periodograms + Sxxk = wosa_periodogram(xseg, [], winVals, nfft); + Sxyk = wosa_periodogram(yseg, xseg, winVals, nfft); + Syyk = wosa_periodogram(yseg, [], winVals, nfft); + + Sxx = Sxx + Sxxk; + Sxy = Sxy + Sxyk; + Syy = Syy + Syyk; + % don't need to be divided by k because only rations are used here + end + +end + +% compute cpsd +function [Sxx, Svxx] = cpsdPeriodogram(x, y, winVals, nSegments, segmentStarts, segmentEnds, detrendOrder) + + Mnxx = 0; + Mn2xx = 0; + nfft = segmentEnds(1); + for ii = 1:nSegments + if detrendOrder < 0 + xseg = x.y(segmentStarts(ii):segmentEnds(ii)); + yseg = y.y(segmentStarts(ii):segmentEnds(ii)); + else + [xseg,coeffs] = ltpda_polyreg(x.y(segmentStarts(ii):segmentEnds(ii)), detrendOrder); + [yseg,coeffs] = ltpda_polyreg(y.y(segmentStarts(ii):segmentEnds(ii)), detrendOrder); + end + + % Compute periodogram + Sxxk = wosa_periodogram(xseg, yseg, winVals, nfft); + + % Welford's algorithm to update mean and variance + Qxx = Sxxk - Mnxx; + Mnxx = Mnxx +Qxx/ii; + Mn2xx = Mn2xx + abs(Qxx.*conj(Sxxk - Mnxx)); + end + Sxx = Mnxx; + if nSegments ==1 + Svxx = []; + else + Svxx = Mn2xx/(nSegments-1)/nSegments; + end + + +end + +% compute psd +function [Sxx, Svxx] = psdPeriodogram(x, winVals, nSegments, segmentStarts, segmentEnds, detrendOrder) + + Mnxx = 0; + Mn2xx = 0; + nfft = segmentEnds(1); + % Loop over the segments + for ii = 1:nSegments + % Detrend if desired + if detrendOrder < 0 + seg = x.y(segmentStarts(ii):segmentEnds(ii)); + else + [seg,coeffs] = ltpda_polyreg(x.y(segmentStarts(ii):segmentEnds(ii)), detrendOrder); + end + % Compute periodogram + Sxxk = wosa_periodogram(seg, [], winVals,nfft); + % Welford's algorithm for updating mean and variance + if ii == 1 + Mnxx = Sxxk; + else + Qxx = Sxxk - Mnxx; + Mnxx = Mnxx + Qxx/ii; + Mn2xx = Mn2xx + Qxx.*(Sxxk - Mnxx); + end + end + Sxx = Mnxx; + if nSegments == 1 + Svxx = []; + else + Svxx = Mn2xx/(nSegments-1)/nSegments; + end + +end + +% Scaled periodogram of one or two input signals +function Sxx = wosa_periodogram(x, y, win, nfft) + + % window data + xwin = x.*win; + isCross = false; + if ~isempty(y) + ywin = y.*win; + isCross = true; + end + + % take fft + X = fft(xwin, nfft); + if isCross + Y = fft(ywin, nfft); + end + + % Compute scale factor to compensate for the window power + K = win'*win; + + % Compute scaled power + Sxx = X.*conj(X)/K; + if isCross, + Sxx = X.*conj(Y)/K; + end + +end