Mercurial > hg > ltpda
diff m-toolbox/classes/+utils/@math/autocfit.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/classes/+utils/@math/autocfit.m Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,525 @@ +% AUTOCFIT performs a fitting loop to identify model order and parameters. +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% DESCRIPTION: +% +% Perform a fitting loop to automatically identify model order and +% parameters in s-domain. Model identification is performed by 'vcfit' +% function. Output is a s-domain model expanded in partial fractions: +% +% r1 rN +% f(s) = ------- + ... + ------- + d +% s - p1 s - pN +% +% The function attempt to perform first the identification of a model +% with d = 0, then if the operation do not succeed, it try the +% identification with d different from zero. +% Identification loop stop when the stop condition is reached. Six +% stop criteria are available: +% +% Mean Squared Error +% Check if the normalized mean squared error is lower than the value +% specified in lrscond: +% mse < 10^(-1*lrsvarcond) +% +% Mean Squared Error and variation +% Check if the normalized mean squared error is lower than the value specified in +% lrscond and that the relative variation of the mean squared error is lower +% than the value provided. +% Checking algorithm is: +% mse < 10^(-1*lrsvarcond) +% Dmse < 10^(-1*msevar) +% +% Log Residuals difference +% Check if the minimum of the logarithmic difference between data and +% residuals is larger than a specified value. ie. if the conditioning +% value is 2, the function ensures that the difference between data and +% residuals is at lest 2 order of magnitude lower than data itsleves. +% Checking algorithm is: +% lsr = log10(abs(y))-log10(abs(rdl)); +% min(lsr) > lrscond; +% +% Log Residuals difference and Root Mean Squared Error +% Check if the log difference between data and residuals is in +% larger than the value indicated in lsrcond and that the variation of +% the root mean squared error is lower than 10^(-1*msevar). +% Checking algorithm is: +% lsr = log10(abs(y))-log10(abs(rdl)); +% (lsr > lrscond) && (mse < 10^(-1*lrsvarcond)); +% +% Residuals Spectral Flatness +% In case of a fit on noisy data, the residuals from a good fit are +% expected to be as much as possible similar to a white noise. This +% property can be used to test the accuracy of a fit procedure. In +% particular it can be tested that the spectral flatness coefficient of +% the residuals is larger than a certain qiantity sf such that 0<sf<1. +% +% Residuals Spectral Flatness and root mean squared error +% Check that the spectral flatness coefficient of the residuals is +% larger than a certain qiantity sf such that 0<sf<1 and that the +% variation of the root mean squared error is lower than +% 10^(-1*msevar). +% +% Once the loop iteration stops the parameters giving best Mean Square +% Error are output. +% +% CALL: +% +% [res,poles,dterm,mresp,rdl,mse] = autocfit(y,f,params) +% +% INPUT: +% +% - y are the data to be fitted. They represent the frequency response +% of a certain process. +% - f is the frequency vector in Hz +% - params is a struct containing identification parameters +% +% params.spolesopt = 0 --> use external starting poles +% params.spolesopt = 1 --> use real starting poles +% params.spolesopt = 2 --> use logspaced complex starting poles. +% Default option +% params.spolesopt = 3 --> use linspaced complex starting poles. +% +% params.extpoles = [] --> a vector with the starting poles. +% Providing a fixed set of starting poles fixes the function order so +% params.minorder and params.maxorder will be internally set to the +% poles vector length. +% +% params.fullauto = 0 --> Perform a fitting loop as far as the number +% of iteration reach Nmaxiter. The order of the fitting function will +% be that specified in params.minorder. If params.dterm is setted to +% 1 the function will fit only with direct term. +% params.fullauto = 1 --> Parform a full automatic search for the +% transfer function order. The fitting procedure will stop when the +% stopping condition defined in params.ctp is satisfied. Default +% value. +% +% params.Nmaxiter = # --> Number of maximum iteration per model order +% parformed. Default is 50. +% +% params.minorder = # --> Minimum model trial order. Default is 2. +% +% params.maxorder = # --> Maximum model trial order. Default is 25. +% +% params.weightparam = 0 --> use external weights +% params.weightparam = 1 --> fit with equal weights (one) for each +% data point. +% params.weightparam = 2 --> weight fit with the inverse of absolute +% value of data. Default value. +% params.weightparam = 3 --> weight fit with the square root of the +% inverse of absolute value of data. +% params.weightparam = 4 --> weight fit with inverse of the square +% mean spread +% +% params.extweights = [] --> A vector of externally provided weights. +% It has to be of the same size of input data. +% +% params.plot = 0 --> no plot during fit iteration +% params.plot = 1 --> plot results at each fitting steps. default +% value. +% +% params.ctp = 'lrs' --> check if the log difference between data and +% residuals is point by point larger than the value indicated in +% lsrcond. This mean that residuals are lsrcond order of magnitudes +% lower than data. +% params.ctp = 'lrsmse' --> check if the log difference between data +% and residuals is larger than the value indicated in lsrcond and if +% the variation of root mean squared error is lower than +% 10^(-1*msevar). +% params.ctp = 'rft' --> check that the residuals spectral flatness +% coefficient is lerger than the value provided in lsrcond. In this +% case lsrcond must be such that 0<lsrcond<1. +% params.ctp = 'rftmse' --> check that the residuals spectral flatness +% coefficient is lerger than the value provided in lsrcond and if +% the variation of root mean squared error is lower than +% 10^(-1*msevar). In this case lsrcond must be such that +% 0<lsrcond<1. +% +% params.lrscond = # --> set conditioning value for point to point +% log residuals difference (params.ctp = 'lsr' and params.ctp = +% 'lrsmse') or set conditioning value for residuals spectral +% flateness (params.ctp = 'rft' and params.ctp = 'rftmse'). In the +% last case params.lrscond must be set to 0<lrscond<1. +% Default is 2. See help for stopfit.m for further remarks. +% +% params.msevar = # --> set conditioning value for root mean squared +% error variation. This allow to check that the variation of root +% mean squared error is lower than 10^(-1*msevar).Default is 7. See +% help for stopfit.m for further remarks. +% +% params.stabfit = 0 --> Fit without forcing poles stability. Default +% value. +% params.stabfit = 1 --> Fit forcing poles stability +% +% params.dterm = 0 --> Try to fit without direct term +% params.dterm = 1 --> Try to fit with and without direct term +% +% params.spy = 0 --> Do not display the iteration progression +% params.spy = 1 --> Display the iteration progression +% +% OUTPUT: +% +% - res is the vector with model residues r +% - poles is the vector with model poles p +% - dterm is the model direct term d +% - mresp is the model frequency response calculated at the input +% frequencies +% - rdl are the residuals between data and model, at the input +% frequencies +% - mse magnitude squared error progression +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% VERSION: $Id: autocfit.m,v 1.22 2010/01/27 17:56:11 luigi Exp $ +% +% HISTORY: 08-10-2008 L Ferraioli +% Creation +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +function [res,poles,dterm,mresp,rdl,mse] = autocfit(y,f,params) + + utils.helper.msg(utils.const.msg.MNAME, 'running %s/%s', mfilename('class'), mfilename); + + % Default input struct + defaultparams = struct('spolesopt',1, 'Nmaxiter',30, 'minorder',2,... + 'maxorder',25, 'weightparam',1, 'plot',1,... + 'ctp','chival','lrscond',2,'msevar',2,... + 'stabfit',0,'dterm',0,'spy',0,'fullauto',1,'extweights', [],... + 'extpoles', []); + + names = {'spolesopt','Nmaxiter','minorder',... + 'maxorder','weightparam','plot',... + 'ctp','lrscond','msevar',... + 'stabfit','dterm','spy','fullauto','extweights','extpoles'}; + + % collecting input and default params + if ~isempty(params) + for jj=1:length(names) + if isfield(params, names(jj)) && ~isempty(params.(names{1,jj})) + defaultparams.(names{1,jj}) = params.(names{1,jj}); + end + end + end + + % collecting input params + spolesopt = defaultparams.spolesopt; + Nmaxiter = defaultparams.Nmaxiter; + minorder = defaultparams.minorder; + maxorder = defaultparams.maxorder; + weightparam = defaultparams.weightparam; + check = defaultparams.plot; + stabfit = defaultparams.stabfit; + ctp = defaultparams.ctp; + lrscond = defaultparams.lrscond; + msevar = defaultparams.msevar; + idt = defaultparams.dterm; + spy = defaultparams.spy; + autosearch = defaultparams.fullauto; + extweights = defaultparams.extweights; + extpoles = defaultparams.extpoles; + + if check == 1 + fitin.plot = 1; + fitin.ploth = figure; % opening new figure window + else + fitin.plot = 0; + end + + if stabfit % fit with stable poles only + fitin.stable = 1; + else % fit without restrictions + fitin.stable = 0; + end + + % Colum vector are preferred + [a,b] = size(y); + if a < b % shifting to column + y = y.'; + end + [Nx,Ny] = size(y); + + [a,b] = size(f); + if a < b % shifting to column + f = f.'; + end + + % in case of externally provided poles + if ~isempty(extpoles) + spolesopt = 0; + end + if spolesopt == 0 % in case of external poles + % Colum vector are preferred + [a,b] = size(extpoles); + if a < b % shifting to column + extpoles = extpoles.'; + end + [Npls,b] = size(extpoles); + minorder = Npls; + maxorder = Npls; + end + + if weightparam == 0 % in case of external weights + % Colum vector are preferred + [a,b] = size(extweights); + if a < b % shifting to column + extweights = extweights.'; + end + end + + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + % Importing package + import utils.math.* + + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + % Fitting + + % decide to fit with or without direct term according to the input + % options + if autosearch + if idt % full auto identification + dterm_off = 1; + dterm_on = 1; + else % auto ident without dterm + dterm_off = 1; + dterm_on = 0; + end + else + if idt % fit only with dterm + dterm_off = 0; + dterm_on = 1; + else % fit without dterm + dterm_off = 1; + dterm_on = 0; + end + end + + ext = zeros(Ny,1); + + % starting banana mse + bmse = inf; + cmse = inf; + + if dterm_off + utils.helper.msg(utils.const.msg.PROC1, ' Try fitting without direct term ') + fitin.dterm = 0; + + % Weighting coefficients + if weightparam == 0 + % using external weigths + utils.helper.msg(utils.const.msg.PROC1, ' Using external weights... ') + weight = extweights; + else + weight = utils.math.wfun(y,weightparam); + end + + % Do not perform the loop if autosearch is setted to false + if autosearch + order_vect = minorder:maxorder; + else + order_vect = minorder:minorder; + end + + for N = order_vect + + if spy + utils.helper.msg(utils.const.msg.PROC1, ['Actual_Order' num2str(N)]) + end + + % Starting poles + if spolesopt == 0 % in case of external poles + utils.helper.msg(utils.const.msg.PROC1, ' Using external poles... ') + spoles = extpoles; + else % internally calculated starting poles + pparams = struct('spolesopt',spolesopt, 'type','CONT', 'pamp', 0.01); + spoles = utils.math.startpoles(N,f,pparams); + end + + % Fitting + M = 2*N; + if M > Nmaxiter + M = Nmaxiter; + elseif not(autosearch) + M = Nmaxiter; + end + + clear mlr + + for hh = 1:M + [res,spoles,dterm,mresp,rdl,mse] = utils.math.vcfit(y,f,spoles,weight,fitin); % Fitting + + % decide to store the best result based on mse + %fprintf('iteration = %d, order = %d \n',hh,N) + if norm(mse)<cmse + %fprintf('nice job \n') + bres = res; + bpoles = spoles; + bdterm = dterm; + bmresp = mresp; + brdl = rdl; + bmse = mse; + cmse = norm(mse); + end + + if spy + utils.helper.msg(utils.const.msg.PROC1, ['Iter' num2str(hh)]) + end + + % ext = zeros(Ny,1); + if autosearch + for kk = 1:Ny + % Stop condition checking + mlr(hh,kk) = mse(:,kk); + % decide between stop conditioning + if strcmpi(ctp,'lrs') + yd = y(:,kk); % input data + elseif strcmpi(ctp,'lrsmse') + yd = y(:,kk); % input data + elseif strcmpi(ctp,'rft') + yd = mresp(:,kk); % model response + elseif strcmpi(ctp,'rftmse') + yd = mresp(:,kk); % model response + elseif strcmpi(ctp,'chival') + yd = y(:,kk); % model response + elseif strcmpi(ctp,'chivar') + yd = y(:,kk); % model response + else + error('!!! Unable to identify appropiate stop condition. See function help for admitted values'); + end + [next,msg] = utils.math.stopfit(yd,rdl(:,kk),mlr(:,kk),ctp,lrscond,msevar); + ext(kk,1) = next; + end + else + for kk = 1:Ny + % storing mse progression + mlr(hh,kk) = mse(:,kk); + end + end + + if all(ext) + utils.helper.msg(utils.const.msg.PROC1, msg) + break + end + + end + if all(ext) + break + end + + end + end + + if dterm_on + if ~all(ext) % fit with direct term only if the fit without does not give acceptable results (in full auto mode) + utils.helper.msg(utils.const.msg.PROC1, ' Try fitting with direct term ') + fitin.dterm = 1; + + if autosearch + order_vect = minorder:maxorder; + else + order_vect = minorder:minorder; + end + + for N = order_vect + + if spy + utils.helper.msg(utils.const.msg.PROC1, ['Actual_Order' num2str(N)]) + end + + % Starting poles + if spolesopt == 0 % in case of external poles + utils.helper.msg(utils.const.msg.PROC1, ' Using external poles... ') + spoles = extpoles; + else % internally calculated starting poles + pparams = struct('spolesopt',spolesopt, 'type','CONT', 'pamp', 0.01); + spoles = utils.math.startpoles(N,f,pparams); + end + + % Fitting + M = 2*N; + if M > Nmaxiter + M = Nmaxiter; + elseif not(autosearch) + M = Nmaxiter; + end + + clear mlr + + for hh = 1:M + [res,spoles,dterm,mresp,rdl,mse] = utils.math.vcfit(y,f,spoles,weight,fitin); % Fitting + + % decide to store the best result based on mse + if norm(mse)<cmse + bres = res; + bpoles = spoles; + bdterm = dterm; + bmresp = mresp; + brdl = rdl; + bmse = mse; + cmse = norm(mse); + end + + if spy + utils.helper.msg(utils.const.msg.PROC1, ['Iter' num2str(hh)]) + end + + ext = zeros(Ny,1); + if autosearch + for kk = 1:Ny + % Stop condition checking + mlr(hh,kk) = mse(:,kk); + % decide between stop conditioning + if strcmpi(ctp,'lrs') + yd = y(:,kk); % input data + elseif strcmpi(ctp,'lrsmse') + yd = y(:,kk); % input data + elseif strcmpi(ctp,'rft') + yd = mresp(:,kk); % model response + elseif strcmpi(ctp,'rftmse') + yd = mresp(:,kk); % model response + elseif strcmpi(ctp,'chival') + yd = y(:,kk); % model response + elseif strcmpi(ctp,'chivar') + yd = y(:,kk); % model response + else + error('!!! Unable to identify appropiate stop condition. See function help for admitted values'); + end + [next,msg] = utils.math.stopfit(yd,rdl(:,kk),mlr(:,kk),ctp,lrscond,msevar); + ext(kk,1) = next; + end + else + for kk = 1:Ny + % storing mse progression + mlr(hh,kk) = mse(:,kk); + end + end + + if all(ext) + utils.helper.msg(utils.const.msg.PROC1, msg) + break + end + + end + if all(ext) + break + end + + end + + end + end + + poles = bpoles; + clear mse + mse = mlr(:,:); + + res = bres; + dterm = bdterm; + mresp = bmresp; + rdl = brdl; + mse = bmse; + + if all(ext) == 0 + utils.helper.msg(utils.const.msg.PROC1, ' Fitting iteration completed without reaching the prescribed accuracy. Try changing Nmaxiter or maxorder or accuracy requirements ') + else + utils.helper.msg(utils.const.msg.PROC1, ' Fitting iteration completed successfully ') + end