Mercurial > hg > ltpda
diff m-toolbox/classes/+utils/@math/csd2tf.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/classes/+utils/@math/csd2tf.m Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,341 @@ +% CSD2TF Input cross spectral density matrix and output stable transfer function +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% DESCRIPTION: +% +% Input cross spectral density (csd) and output corresponding +% stable functions. Identification can be performed for a simple system +% (one psd) or for a N dimensional system. Discrete transfer functions are +% output in partial fraction expansion: +% +% r1 rN +% f(z) = ----------- + ... + ----------- + d +% 1-p1*z^{-1} 1-pN*z^{-1} +% +% System identification is performed in frequency domain, the order of +% the model function is automatically chosen by the algorithm on the +% base of the input tolerance condition. +% In the case of simple systems the square root of the psd is fitted +% and then the model is stabilized by the application of an all-pass +% function. +% In the case of two dimensional systems, transfer functions frequency +% response is calculated by the eigendecomposition of the +% cross-spectral matrix. Then models are identified by fitting +% in frequency domain. +% +% CALL: +% out = csd2tf(csd,f,params) +% +% INPUT: +% +% - csd is the cross spectral density matrix. It is in general a +% [n,n,m] dimensional matrix. Where n is the dimension of the system +% and m is the number of frequencies +% - f: is the corresponding frequencies vector in Hz (of length m) +% - params: is a struct of identification options, the possible values +% are: +% +% params.fullauto = 0 --> Perform a fitting loop as far as the number +% of iteration reach Nmaxiter. The order of the fitting function will +% be that specified in params.minorder. If params.dterm is setted to +% 1 the function will fit only with direct term. +% params.fullauto = 1 --> Parform a full automatic search for the +% transfer function order. The fitting procedure will stop when the +% stopping condition defined in params.ctp is satisfied. Default +% value. +% +% - params.Nmaxiter = # set the maximum number of fitting steps +% performed for each trial function order. Default is 50 +% +% - params.minorder = # set the minimum possible function order. +% Default is 2 +% +% - params.maxorder = # set the maximum possible function order. +% Default is 25 +% +% params.spolesopt = 1 --> use real starting poles +% params.spolesopt = 2 --> generates complex conjugates poles of the +% type \alfa e^{j\pi\theta} with \theta = linspace(0,pi,N/2+1). +% params.spolesopt = 3 --> generates complex conjugates poles of the +% type \alfa e^{j\pi\theta} with \theta = linspace(0,pi,N/2+2). +% Default option. +% +% - params.weightparam = 0 --> use external weights +% - params.weightparam = 1 equal weights (one) for each point +% - params.weightparam = 2 weight with the inverse of absolute value +% of fitting data +% - params.weightparam = 3 weight with square root of the inverse of +% absolute value of fitting data +% - params.weightparam = 4 weight with the inverse of the square mean +% spread +% +% params.extweights = [] --> A vector of externally provided weights. +% It has to be of the same size of input data. +% +% - params.plot = 0 --> no plot during fit iteration +% - params.plot = 1 --> plot results at each fitting steps. default +% value. +% +% - params.ctp = 'chival' --> check if the value of the Mean Squared +% Error is lower than 10^(-1*lsrcond). +% - params.ctp = 'chivar' --> check if the value of the Mean Squared +% Error is lower than 10^(-1*lsrcond) and if the relative variation of mean +% squared error is lower than 10^(-1*msevar). +% - params.ctp = 'lrs' --> check if the log difference between data and +% residuals is point by point larger than the value indicated in +% lsrcond. This mean that residuals are lsrcond order of magnitudes +% lower than data. +% - params.ctp = 'lrsmse' --> check if the log difference between data +% and residuals is larger than the value indicated in lsrcond and if +% the relative variation of mean squared error is lower than +% 10^(-1*msevar). +% +% - params.lrscond = # --> set conditioning value for point to point +% log residuals difference (params.ctp = 'lsr') and mean log residual +% difference (params.ctp = 'mlsrvar'). Default is 2. See help for +% stopfit.m for further remarks. +% +% - params.msevar = # --> set conditioning value for root mean squared +% error variation. This allow to check that the relative variation of +% mean squared error is lower than 10^(-1*msevar).Default is 7. See +% help for stopfit.m for further remarks. +% +% - params.fs set the sampling frequency (Hz). Default is 1 Hz +% +% params.dterm = 0 --> Try to fit without direct term +% params.dterm = 1 --> Try to fit with and without direct term +% +% params.spy = 0 --> Do not display the iteration progression +% params.spy = 1 --> Display the iteration progression +% +% +% OUTPUT: +% +% - ostruct is a struct with the fields: +% - ostruct(n).res --> is the vector of residues. +% - ostruct(n).poles --> is the vector of poles. +% - ostruct(n).dterm --> is the vector of direct terms. +% - ostruct(n).mresp --> is the vector of tfs models responses. +% - ostruct(n).rdl --> is the vector of fit residuals. +% - ostruct(n).mse --> is the vector of mean squared errors. +% +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% VERSION: $Id: csd2tf.m,v 1.1 2009/04/23 09:56:28 luigi Exp $ +% +% HISTORY: 22-04-2009 L Ferraioli +% Creation +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +function ostruct = csd2tf(csd,f,params) + + utils.helper.msg(utils.const.msg.MNAME, 'running %s/%s', mfilename('class'), mfilename); + + % Collect inputs + + % Default input struct + defaultparams = struct('Nmaxiter',50, 'minorder',2,... + 'maxorder',25, 'spolesopt',2, 'weightparam',1, 'plot',0,... + 'ctp','chival','lrscond',2,'msevar',2,... + 'fs',1,'dterm',0, 'spy',0, 'fullauto',1,... + 'extweights', []); + + names = {'Nmaxiter','minorder','maxorder','spolesopt',... + 'weightparam','plot','stopfitcond',... + 'ctp','lrscond','msevar',... + 'fs','dterm','spy','fullauto','extweights'}; + + % collecting input and default params + if ~isempty(params) + for jj=1:length(names) + if isfield(params, names(jj)) && ~isempty(params.(names{1,jj})) + defaultparams.(names{1,jj}) = params.(names{1,jj}); + end + end + end + + % default values for input variables + Nmaxiter = defaultparams.Nmaxiter; % Number of max iteration in the fitting loop + minorder = defaultparams.minorder; % Minimum model order + maxorder = defaultparams.maxorder; % Maximum model order + spolesopt = defaultparams.spolesopt; % 0, Fit with no complex starting poles (complex poles can be found as fit output). 1 fit with comples starting poles + weightparam = defaultparams.weightparam; % Weight 1./abs(y). Admitted values are 0, 1, 2, 3 + checking = defaultparams.plot; % Never polt. Admitted values are 0 (No polt ever), 1 (plot at the end), 2 (plot at each step) + ctp = defaultparams.ctp; + lrscond = defaultparams.lrscond; + msevar = defaultparams.msevar; + fs = defaultparams.fs; % sampling frequency + idt = defaultparams.dterm; + spy = defaultparams.spy; + autosearch = defaultparams.fullauto; + extweights = defaultparams.extweights; + + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + % Checking inputs + + [a,b] = size(f); + if a < b % shifting to column + f = f.'; + end + + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + % switching between inputs + + clear dim + % cecking for dimensionality + [nn,mm,kk] = size(csd); + if kk == 1 + dim = '1dim'; + utils.helper.msg(utils.const.msg.PROC1, ' Performing one dimesional identification on psd ') + if nn < mm % shift to column + csd = csd.'; + end + else + dim ='ndim'; + utils.helper.msg(utils.const.msg.PROC1, ' Performing N dimesional identification on csd ') + end + + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + % system identification + + switch dim + case '1dim' + + utils.helper.msg(utils.const.msg.PROC1, ' Performing z-domain identification ') + itf = abs(sqrt(csd)); % input data + + % Fitting params + params = struct('spolesopt',spolesopt, 'Nmaxiter',Nmaxiter, 'minorder',minorder,... + 'maxorder',maxorder, 'weightparam',weightparam, 'plot',checking,... + 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... + 'stabfit',0,'dterm',idt,'spy',spy,'fullauto',autosearch,'extweights',extweights); + + % Fitting + utils.helper.msg(utils.const.msg.PROC1, ' Fitting absolute TF value with unstable model ') + [res,poles,dterm,mresp,rdl,msei] = utils.math.autodfit(itf,f,fs,params); + + % all pass filtering for poles stabilization + [ntf,np] = utils.math.pfallpz(res,poles,dterm,mresp,f,fs,false); + + % Fitting params + params = struct('spolesopt',0,'extpoles', np,... + 'Nmaxiter',Nmaxiter,'minorder',minorder,'maxorder',maxorder,... + 'weightparam',weightparam,'plot',checking,... + 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... + 'stabfit',1,... + 'dterm',idt,'spy',spy,'fullauto',autosearch,... + 'extweights',extweights); + + utils.helper.msg(utils.const.msg.PROC1, ' Fitting TF with stable model ') + [res,poles,dterm,mresp,rdl,msef] = utils.math.autodfit(ntf,f,fs,params); + + % Output data switching between output type + utils.helper.msg(utils.const.msg.PROC1, ' Output z-domain model ') + + ostruct = struct(); + + ostruct.res = res; + ostruct.poles = poles; + ostruct.dterm = dterm; + ostruct.mresp = mresp; + ostruct.rdl = rdl; + ostruct.mse = msei; + + case 'ndim' + % switching between continuous and discrete type identification + +% utils.helper.msg(utils.const.msg.PROC1, ' Performing z-domain identification on 2dim system, z-domain output ') + tf = utils.math.ndeigcsd(csd,'OTP','TF','MTD','KAY'); % input data + + [nn,mm,kk] = size(tf); + +% % Shifting to columns +% [a,b] = size(tf11); +% if a<b +% tf11 = tf11.'; +% end +% [a,b] = size(tf12); +% if a<b +% tf12 = tf12.'; +% end +% [a,b] = size(tf21); +% if a<b +% tf21 = tf21.'; +% end +% [a,b] = size(tf22); +% if a<b +% tf22 = tf22.'; +% end +% +% % Collecting tfs +% f1 = [tf11 tf21]; +% f2 = [tf12 tf22]; + + %%% System identification + + % init output + ostruct = struct(); + + for dd = 1:mm + fun = squeeze(tf(1,dd,:)); + % willing to work with columns + [a,b] = size(fun); + if a<b + fun = fun.'; + end + for ff = 2:nn + tfun = squeeze(tf(ff,dd,:)); + % willing to work with columns + [a,b] = size(tfun); + if a<b + tfun = tfun.'; + end + fun = [fun tfun]; + end + + % Fitting with unstable poles %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + params = struct('spolesopt',spolesopt, 'Nmaxiter',Nmaxiter, 'minorder',minorder,... + 'maxorder',maxorder, 'weightparam',weightparam, 'plot',checking,... + 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... + 'stabfit',0,'dterm',idt,'spy',spy,'fullauto',autosearch,'extweights',extweights); + + % Fitting + utils.helper.msg(utils.const.msg.PROC1, ' Fitting with unstable common poles ') + [res,poles,dterm,mresp,rdl,msei] = utils.math.autodfit(fun,f,fs,params); + + % Poles stabilization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + utils.helper.msg(utils.const.msg.PROC1, ' All pass filtering') + [nfun,np] = utils.math.pfallpz(res,poles,dterm,mresp,f,fs,false); + np = np(:,1); + + % Fitting with stable poles %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + + % Fitting params + params = struct('spolesopt',0,'Nmaxiter',Nmaxiter,... + 'minorder',minorder,'maxorder',maxorder,... + 'weightparam',weightparam,'plot',checking,... + 'ctp',ctp,'lrscond',lrscond,'msevar',msevar,... + 'stabfit',1,... + 'dterm',idt,'spy',spy,'fullauto',autosearch,... + 'extweights',extweights,'extpoles', np); + + % Fitting + utils.helper.msg(utils.const.msg.PROC1, ' Fitting with stable common poles ') + [res,poles,dterm,mresp,rdl,msef] = utils.math.autodfit(nfun,f,fs,params); + + + % Output stable model %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + + ostruct(dd).res = res; + ostruct(dd).poles = poles; + ostruct(dd).dterm = dterm; + ostruct(dd).mresp = mresp; + ostruct(dd).rdl = rdl; + ostruct(dd).mse = msei; + + end + + end +end + +% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%