Mercurial > hg > ltpda
diff m-toolbox/classes/+utils/@math/ctfit.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/classes/+utils/@math/ctfit.m Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,427 @@ +% CTFIT fits a continuous model to a frequency response. +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% DESCRIPTION: +% +% Fits a continuous model to a frequency response using relaxed +% s-domain vector fitting algorithm [1, 2]. Model function is expanded +% in partial fractions: +% +% r1 rN +% f(s) = ------- + ... + ------- + d +% s - p1 s - pN +% +% CALL: +% +% [res,poles,dterm,mresp,rdl] = ctfit(y,f,poles,weight,fitin) +% +% INPUTS: +% +% - y: Is a vector wuth the frequency response data. +% - f: Is the frequency vector in Hz. +% - poles: are a set of starting poles. +% - weight: are a set of weights used in the fitting procedure. +% - fitin: is a struct containing fitting options and parameters. fitin +% fields are: +% - fitin.stable = 0; fit without forcing poles to be stable. +% - fitin.stable = 1; force poles to be stable flipping unstable +% poles in the left side of the complex plane. s -> s - 2*conj(s). +% - fitin.dterm = 0; fit with d = 0. +% - fitin.dterm = 1; fit with d different from 0. +% - fitin.polt = 0; fit without plotting results. +% - fitin.plot = 1; plot fit results. +% +% OUTPUT: +% +% - res: vector or residues. +% - poles: vector of poles. +% - dterm: direct term d. +% - mresp: frequency response of the fitted model +% - rdl: residuals y - mresp +% +% REFERENCES: +% +% [1] B. Gustavsen and A. Semlyen, "Rational approximation of frequency +% domain responses by Vector Fitting", IEEE Trans. Power Delivery +% vol. 14, no. 3, pp. 1052-1061, July 1999. +% [2] B. Gustavsen, "Improving the Pole Relocating Properties of Vector +% Fitting", IEEE Trans. Power Delivery vol. 21, no. 3, pp. +% 1587-1592, July 2006. +% +% NOTE: +% +% This function cannot handle more than one frequency response per time +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% VERSION: $Id: ctfit.m,v 1.2 2008/10/24 06:19:23 hewitson Exp $ +% +% HISTORY: 12-09-2008 L Ferraioli +% Creation +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +function [res,poles,dterm,mresp,rdl] = ctfit(y,f,poles,weight,fitin) + + %% Collecting inputs + + % Default input struct + defaultparams = struct('stable',0, 'dterm',0, 'plot',0); + + names = {'stable','dterm','plot'}; + + % collecting input and default params + if ~isempty(fitin) + for jj=1:length(names) + if isfield(fitin, names(jj)) + defaultparams.(names{1,jj}) = fitin.(names{1,jj}); + end + end + end + + stab = defaultparams.stable; % Enforce pole stability is is 1 + dt = defaultparams.dterm; % 1 to fit with direct term + plotting = defaultparams.plot; % set to 1 if plotting is required + + %% Inputs in column vectors + + [a,b] = size(y); + if a < b % shifting to column + y = y.'; + end + + [a,b] = size(f); + if a < b % shifting to column + f = f.'; + end + + [a,b] = size(poles); + if a < b % shifting to column + poles = poles.'; + end + + clear w + w = weight; + [a,b] = size(w); + if a < b % shifting to column + w = w.'; + end + + N = length(poles); % Model order + + if dt + dl = 1; % Fit with direct term + else + dl = 0; % Fit without direct term + end + + % definition of s + s = 1i.*2.*pi.*f; + + Nz = length(s); + + %% Marking complex and real poles + + % cindex = 1; pole is complex, next conjugate pole is marked with cindex + % = 2. cindex = 0; pole is real + cindex=zeros(N,1); + for m=1:N + if imag(poles(m))~=0 + if m==1 + cindex(m)=1; + else + if cindex(m-1)==0 || cindex(m-1)==2 + cindex(m)=1; cindex(m+1)=2; + else + cindex(m)=2; + end + end + end + end + + %% Initializing the augmented problem matrices + + + + % Matrix initialinzation + BA = zeros(Nz+1,1); + AA = zeros(Nz+1,2*N+dl+1); + Ak=zeros(Nz,N+1); + + % Defining Ak + for jj = 1:N + if cindex(jj) == 1 % conjugate complex couple of poles + Ak(:,jj) = (1./(s-poles(jj)))+(1./(s-poles(jj+1))); + Ak(:,jj+1) = (1i./(s-poles(jj)))-(1i./(s-poles(jj+1))); + elseif cindex(jj) == 0 % real pole + Ak(:,jj) = 1./(s-poles(jj)); + end + end + + + Ak(1:Nz,N+1) = ones(Nz,1); + + + for m=1:N+dl % left columns + AA(1:Nz,m)=w.*Ak(1:Nz,m); + end + for m=1:N+1 %Rightmost blocks + AA(1:Nz,N+dt+m)=-w.*(Ak(1:Nz,m).*y); + end + + % Scaling factor + clear sc + sc = norm(w.*y)/Nz; + + % setting the last row of AA and BA for the relaxion condition + for qq = 1:N+1 + AA(Nz+1,N+dl+qq) = real(sc*sum(Ak(:,qq))); + end + + AA = [real(AA);imag(AA)]; + + % AAstr1 = AA; % storing + + % Last element of the solution vector + BA(Nz+1) = Nz*sc; + + % solving for real and imaginary part of the solution vector + nBA = [real(BA);imag(BA)]; + + % Normalization factor + nf = zeros(2*N+dl+1,1); + for pp = 1:2*N+dl+1 + nf(pp,1) = norm(AA(:,pp),2); % Euclidean norm + AA(:,pp) = AA(:,pp)./nf(pp,1); % Normalization + end + + + %% Solving augmented problem + + % XA = pinv(AA)*nBA; + % XA = inv((AA.')*AA)*(AA.')*nBA; + + % XA = AA.'*AA\AA.'*nBA; + + XA = AA\nBA; + + XA = XA./nf; % renormalization + + %% Finding zeros of sigma + + lsr = XA(N+dl+1:2*N+dl,1); % collect the least square results + + Ds = XA(end); % direct term of sigma + + % Real poles have real residues, complex poles have comples residues + rs = zeros(N,1); + for tt = 1:N + if cindex(tt) == 1 % conjugate complex couple of poles + rs(tt,1) = lsr(tt)+1i*lsr(tt+1); + rs(tt+1,1) = lsr(tt)-1i*lsr(tt+1); + elseif cindex(tt) == 0 % real pole + rs(tt,1) = lsr(tt); + end + end + + % [snum, sden] = residue(rs,poles,Ds); + % + % % ceking for numerical calculation errors + % for jj = 1:length(snum) + % if ~isequal(imag(snum(jj)),0) + % snum(jj)=real(snum(jj)); + % end + % end + % + % % Zeros of sigma are poles of F + % szeros = roots(snum); + + DPOLES = diag(poles); + B = ones(N,1); + C = rs.'; + for kk = 1:N + if cindex(kk) == 1 + DPOLES(kk,kk)=real(DPOLES(kk,kk)); + DPOLES(kk,kk+1)=imag(DPOLES(kk,kk)); + DPOLES(kk+1,kk)=-1*imag(DPOLES(kk,kk)); + DPOLES(kk+1,kk+1)=real(DPOLES(kk,kk)); + B(kk,1) = 2; + B(kk+1,1) = 0; + C(1,kk) = real(C(1,kk)); + C(1,kk+1) = imag(C(1,kk)); + end + end + + H = DPOLES-B*C/Ds; + szeros = eig(H); + + %% Ruling out unstable poles + + % This option force the poles of f to stay inside the left side of the + % complex plane + + if stab + unst = real(szeros)>0; + szeros(unst) = szeros(unst)-2*real(szeros(unst)); % Mirroring respect to the complex axes + end + N = length(szeros); + + %% Separating complex poles from real poles and ordering + + rnpoles = []; + inpoles = []; + for tt = 1:N + if imag(szeros(tt)) == 0 + % collecting real poles + rnpoles = [rnpoles; szeros(tt)]; + else + % collecting complex poles + inpoles = [inpoles; szeros(tt)]; + end + end + + % Sorting complex poles in order to have them in the expected order a+jb + % and a-jb a>0 b>0 + inpoles = sort(inpoles); + npoles = [rnpoles;inpoles]; + npoles = npoles - 2.*1i.*imag(npoles); + + %% Marking complex and real poles + + cindex=zeros(N,1); + for m=1:N + if imag(npoles(m))~=0 + if m==1 + cindex(m)=1; + else + if cindex(m-1)==0 || cindex(m-1)==2 + cindex(m)=1; cindex(m+1)=2; + else + cindex(m)=2; + end + end + end + end + + %% Initializing direct problem + + % Matrix initialinzation + B = w.*y; + AD = zeros(Nz,N+dl); + Ak=zeros(Nz,N+dl); + + % Defining Ak + for jj = 1:N + if cindex(jj) == 1 % conjugate complex couple of poles + Ak(:,jj) = (1./(s-npoles(jj)))+(1./(s-npoles(jj+1))); + Ak(:,jj+1) = (1i./(s-npoles(jj)))-(1i./(s-npoles(jj+1))); + elseif cindex(jj) == 0 % real pole + Ak(:,jj) = 1./(s-npoles(jj)); + end + end + + if dt + Ak(1:Nz,N+dl) = ones(Nz,1); % considering the direct term + end + + % Defining AD + for m=1:N+dl + AD(1:Nz,m)=w.*Ak(1:Nz,m); + end + + + AD = [real(AD);imag(AD)]; + nB = [real(B);imag(B)]; + + % Normalization factor + nf = zeros(N+dl,1); + for pp = 1:N+dl + nf(pp,1) = norm(AD(:,pp),2); % Euclidean norm + AD(:,pp) = AD(:,pp)./nf(pp,1); % Normalization + end + + %% Solving direct problem + + % XD = inv((AD.')*AD)*(AD.')*nB; + % XD = AD.'*AD\AD.'*nB; + % XD = pinv(AD)*nB; + XD = AD\nB; + + XD = XD./nf; % Renormalization + + %% Final residues and poles of f + + if dt + lsr = XD(1:end-1); % Fitting with direct term + else + lsr = XD(1:end); % Fitting without direct term + end + + res = zeros(N,1); + % Real poles have real residues, complex poles have comples residues + for tt = 1:N + if cindex(tt) == 1 % conjugate complex couple of poles + res(tt) = lsr(tt)+1i*lsr(tt+1); + res(tt+1) = lsr(tt)-1i*lsr(tt+1); + elseif cindex(tt) == 0 % real pole + res(tt) = lsr(tt); + end + end + + clear poles + poles = npoles; + + if dt + dterm = XD(end); + else + dterm = 0; + end + + %% freq resp of the fit model + + % f = pfparams.freq; + r = res; + p = poles; + d = dterm; + + Nf = length(f); + N = length(p); + + rsp = zeros(Nf,1); + indx = (0:length(d)-1).'; + for ii = 1:Nf + for jj = 1:N + rsptemp = r(jj)/(1i*2*pi*f(ii)-p(jj)); + rsp(ii) = rsp(ii) + rsptemp; + end + % Direct terms response + rsp(ii) = rsp(ii) + sum(((1i*2*pi*f(ii))*ones(length(d),1).^indx).*d); + end + + mresp = rsp; + + % Residual + rdl = y - mresp; + + %% Plotting response + + if plotting + figure(1) + subplot(2,1,1); + loglog(f,abs(y),'k') + hold on + loglog(f,abs(mresp),'r') + loglog(f,abs(rdl),'b') + xlabel('Frequency [Hz]') + ylabel('Amplitude') + legend('Original', 'CTFIT','Residual') + hold off + + subplot(2,1,2); + semilogx(f,angle(y),'k') + hold on + semilogx(f,angle(mresp),'r') + xlabel('Frequency [Hz]') + ylabel('Phase [Rad]') + legend('Original', 'CTFIT') + end + hold off +end \ No newline at end of file