diff m-toolbox/classes/@ao/.#psd.m.1.68 @ 0:f0afece42f48

Import.
author Daniele Nicolodi <nicolodi@science.unitn.it>
date Wed, 23 Nov 2011 19:22:13 +0100
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/m-toolbox/classes/@ao/.#psd.m.1.68	Wed Nov 23 19:22:13 2011 +0100
@@ -0,0 +1,164 @@
+% PSD makes power spectral density estimates of the time-series objects
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%
+% DESCRIPTION: PSD makes power spectral density estimates of the
+%              time-series objects in the input analysis objects
+%              using the Welch Overlap method. PSD is computed
+%              using a modified version of MATLAB's welch (>> help welch).
+%
+% CALL:        bs = psd(a1,a2,a3,...,pl)
+%              bs = psd(as,pl)
+%              bs = as.psd(pl)
+%
+% INPUTS:      aN   - input analysis objects
+%              as   - input analysis objects array
+%              pl   - input parameter list
+%
+% OUTPUTS:     bs   - array of analysis objects, one for each input
+%
+% <a href="matlab:utils.helper.displayMethodInfo('ao', 'psd')">Parameters Description</a>
+%
+% VERSION:    $Id: psd.m,v 1.68 2011/04/27 05:41:08 mauro Exp $
+%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+
+function varargout = psd(varargin)
+  
+  % Check if this is a call for parameters
+  if utils.helper.isinfocall(varargin{:})
+    varargout{1} = getInfo(varargin{3});
+    return
+  end
+  
+  import utils.const.*
+  utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename);
+  
+  % Collect input variable names
+  in_names = cell(size(varargin));
+  for ii = 1:nargin,in_names{ii} = inputname(ii);end
+  
+  % Collect all AOs
+  [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names);
+  
+  % Decide on a deep copy or a modify
+  bs = copy(as, nargout);
+  
+  % Apply defaults to plist
+  usepl = applyDefaults(getDefaultPlist, varargin{:});
+  
+  inhists = [];
+  
+  % Loop over input AOs
+  for jj = 1 : numel(bs)
+    % gather the input history objects
+    inhists = [inhists bs(jj).hist];
+      
+    % check input data
+    if isa(bs(jj).data, 'tsdata')
+      
+      % Check the time range.
+      time_range = mfind(usepl, 'split', 'times');
+      if ~isempty(time_range)
+        switch class(time_range)
+          case 'double'
+            bs(jj) = split(bs(jj), plist(...
+              'times', time_range));
+          case 'timespan'
+            bs(jj) = split(bs(jj), plist(...
+              'timespan', time_range));
+          case 'time'
+            bs(jj) = split(bs(jj), plist(...
+              'start_time', time_range(1), ...
+              'end_time', time_range(2)));
+          case 'cell'
+            bs(jj) = split(bs(jj), plist(...
+              'start_time', time_range{1}, ...
+              'end_time', time_range{2}));
+          otherwise
+        end
+      end
+      
+      % Check the length of the object
+      if bs(jj).len <= 0
+        error('### The object is empty! Please revise your settings ...');
+      end
+  
+      % Utility to deal with nfft, win, olap etc
+      use_pl = utils.helper.process_spectral_options(usepl, 'lin', len(bs(jj)), bs(jj).fs);      
+      
+      % Compute PSD using pwelch
+      [pxx, f, info, dev] = welch(bs(jj), 'psd', use_pl);
+      
+      % Keep the data shape of the input AO
+      if size(bs(jj).data.y,1) == 1
+        pxx = pxx.';
+        f   = f.';
+      end
+      % create new output fsdata
+      fs = bs(jj).fs;
+      fsd = fsdata(f, pxx, fs);
+      fsd.setXunits('Hz');
+      fsd.setYunits(info.units);
+      fsd.setEnbw(info.enbw);
+      fsd.setNavs(info.navs);
+      fsd.setT0(bs(jj).data.t0);
+      % update AO
+      bs(jj).data = fsd;
+      % add std deviation
+      bs(jj).data.dy = dev;
+      % set name: scaling of spectrum
+      scale = upper(find(use_pl, 'Scale'));
+      bs(jj).name = sprintf('%s(%s)', lower(scale), ao_invars{jj});
+      % Add history
+      bs(jj).addHistory(getInfo('None'), use_pl, ao_invars(jj), inhists(jj));
+    else
+      warning('### Ignoring input AO number %d (%s); it is not a time-series.', jj, bs(jj).name)
+    end
+  end % loop over analysis objects
+  
+  % Set output
+  varargout = utils.helper.setoutputs(nargout, bs);
+end
+
+%--------------------------------------------------------------------------
+% Get Info Object
+%--------------------------------------------------------------------------
+function ii = getInfo(varargin)
+  if nargin == 1 && strcmpi(varargin{1}, 'None')
+    sets = {};
+    pl   = [];
+  else
+    sets = {'Default'};
+    pl   = getDefaultPlist();
+  end
+  % Build info object
+  ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: psd.m,v 1.68 2011/04/27 05:41:08 mauro Exp $', sets, pl);
+end
+
+%--------------------------------------------------------------------------
+% Get Default Plist
+%--------------------------------------------------------------------------
+function plout = getDefaultPlist()
+  persistent pl;  
+  if ~exist('pl', 'var') || isempty(pl)
+    pl = buildplist();
+  end
+  plout = pl;  
+end
+
+function pl = buildplist()
+  
+  % General plist for Welch-based, linearly spaced spectral estimators
+  pl = plist.WELCH_PLIST;
+  
+  % Scale
+  p = param({'Scale',['The scaling of output. Choose from:<ul>', ...
+    '<li>PSD - Power Spectral Density</li>', ...
+    '<li>ASD - Amplitude (linear) Spectral Density</li>', ...
+    '<li>PS  - Power Spectrum</li>', ...
+    '<li>AS  - Amplitude (linear) Spectrum</li></ul>']}, {1, {'PSD', 'ASD', 'PS', 'AS'}, paramValue.SINGLE});
+  pl.append(p);
+  
+end
+