Mercurial > hg > ltpda
diff m-toolbox/classes/@ao/bin_data.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/classes/@ao/bin_data.m Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,298 @@ +% BIN_DATA rebins aos data, on logarithmic scale, linear scale, or arbitrarly chosen. +% The rebinning is done taking the mean of the bins included in the range +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% DESCRIPTION: BIN_DATA rebins aos data, on logarithmic scale, linear scale, or arbitrarly chosen. +% The rebinning is done taking the mean of the bins included in the range +% +% CALL: bs = bin_data(a1,a2,a3,...,pl) +% bs = bin_data(as,pl) +% bs = as.bin_data(pl) +% +% INPUTS: aN - input analysis objects +% as - input analysis objects array +% pl - input parameter list +% +% OUTPUTS: bs - array of analysis objects, one for each input +% +% <a href="matlab:utils.helper.displayMethodInfo('ao', 'bin_data')">Parameters Description</a> +% +% The code is inherited from D Nicolodi, UniTN +% +% VERSION: $Id: bin_data.m,v 1.20 2011/05/10 16:46:48 mauro Exp $ +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + + + +function varargout = bin_data(varargin) + + % Check if this is a call for parameters + if utils.helper.isinfocall(varargin{:}) + varargout{1} = getInfo(varargin{3}); + return + end + + import utils.const.* + utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); + + % Collect input variable names + in_names = cell(size(varargin)); + for ii = 1:nargin,in_names{ii} = inputname(ii);end + + % Collect all AOs + [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); + + % Decide on a deep copy or a modify + bs = copy(as, nargout); + + % Apply defaults to plist + usepl = applyDefaults(getDefaultPlist(), varargin{:}); + + x_scale = find(usepl, 'x_scale', find(usepl, 'xscale')); + x_vals = find(usepl, 'x_vals', find(usepl, 'xvals')); + resolution = find(usepl, 'resolution'); + range = find(usepl, 'range'); + method = lower(find(usepl, 'method')); + inherit_dy = utils.prog.yes2true(find(usepl, 'inherit-dy', find(usepl, 'inherit_dy'))); + + % Loop over input AOs + for jj = 1:numel(bs) + + % check input data + if isa(bs(jj).data, 'data2D') + + w = find(usepl, 'weights'); + + if isa(w, 'ao') + w = w.y; + end + + if isempty(w) + w = 1./(bs(jj).dy).^2; + end + + if isempty(x_vals) + if isempty(x_scale) || isempty(resolution) + error('### Please specify a scale and density for binning, OR the list of the values to bin around'); + else + + switch lower(x_scale) + case {'lin', 'linear'} + % Case of linear binning + % number of bins in the rebinned data set + N = resolution; + + % maximum and minimum x + if ~isempty(range) && isfinite(range(1)) + xmin = range(1); + else + xmin = min(bs(jj).x); + end + + if ~isempty(range) && isfinite(range(2)) + xmax = range(2); + else + xmax = max(bs(jj).x); + end + + dx = (xmax - xmin)/N; + + x_min = bs(jj).x(1) + dx*(0:(N-1))'; + x_max = bs(jj).x(1) + dx*(1:N)'; + + case {'log', 'logarithmic'} + % Case of log-based binning + + % maximum and minimum x + if ~isempty(range) && isfinite(range(1)) + xmin = range(1); + else + xmin = min(bs(jj).x(bs(jj).x > 0)); + end + + if ~isempty(range) && isfinite(range(2)) + xmax = range(2); + else + xmax = max(bs(jj).x); + end + + alph = 10^(1/resolution); + + % number of bins in the rebinned data set + N = ceil(log10(xmax/xmin) * resolution); + + % maximum and minimum x-value for each bin + x_min = xmin*alph.^(0:(N-1))'; + x_max = xmin*alph.^(1:N)'; + otherwise + error(['### Unknown scaling option ' x_scale '. Please choose between ''lin'' and ''log']); + end + end + else + % number of bins in the rebinned data set + % If the x-scale is an AO, then take the x values + if isa(x_vals, 'ao') + if eq(x_vals.xunits, bs(jj).xunits) + x_vals = x_vals.x; + else + error('x_vals AO and data AO have different x-units'); + end + elseif ~isnumeric(x_vals) + error('Unsupported x_vals object'); + end + N = length(x_vals) - 1; + x_min = x_vals(1:N); + x_max = x_vals(2:N+1); + end + + x = bs(jj).x; + y = bs(jj).y; + dy = bs(jj).dy; + + % preallocate output vectors + xr = zeros(N, 1); + yr = zeros(N, size(y, 2)); + if strcmpi(method, 'mean') || strcmpi(method, 'wmean') + dyr = zeros(N, size(y, 2)); + else + dyr = []; + end + nr = zeros(N, 1); + + % compute the averages + for kk = 1:N + in = x >= x_min(kk) & x < x_max(kk); + if any(in) + nr(kk) = sum(in); % number of points averaged in this bin + + switch method + case {'mean', 'median', 'max', 'min', 'rms'} + xr(kk) = feval(method, x(in)); % rebinned x bins; + yr(kk) = feval(method, y(in)); % rebinned y bins; + if strcmpi(method, 'mean') + dyr(kk) = std(y(in), 0)/sqrt(nr(kk)); + % check for zeros in the uncertainty and replace it with the individual point uncertainty + if dyr(kk) == 0 + if inherit_dy && ~isempty(dy) + dyr(kk) = mean(dy(in)); + else + dyr(kk) = Inf; + end + end + end + case {'wmean'} + xr(kk) = mean(x(in)); % rebinned x bins; + yr(kk) = sum(y(in).*w(in))./sum(w(in)); % rebinned y bins; + dyr(kk) = 1./sqrt(sum(w(in))); % rebinned dy bins; + otherwise + error(['### Unsupported method ' method]); + end + end + end + + % remove bins where we do not have nothing to average + in = nr ~= 0; + nr = nr(in); + xr = xr(in); + yr = yr(in,:); + if strcmpi(method, 'mean') || strcmpi(method, 'wmean') + dyr = dyr(in,:); + end + + % set the new object data + bs(jj).setXY(xr, yr); + bs(jj).setDy(dyr); + + % nr goes into the procinfo + bs(jj).procinfo = plist('navs', nr); + + % set name + bs(jj).name = sprintf('bin_data(%s)', ao_invars{jj}); + % Add history + bs(jj).addHistory(getInfo('None'), usepl, ao_invars(jj), bs(jj).hist); + else + warning('### Ignoring input AO number %d (%s); it is not a 2D data object.', jj, bs(jj).name) + end + end % loop over analysis objects + + % Set output + varargout = utils.helper.setoutputs(nargout, bs); +end + +%-------------------------------------------------------------------------- +% Get Info Object +%-------------------------------------------------------------------------- +function ii = getInfo(varargin) + if nargin == 1 && strcmpi(varargin{1}, 'None') + sets = {}; + pl = []; + else + sets = {'Default'}; + pl = getDefaultPlist(); + end + % Build info object + ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: bin_data.m,v 1.20 2011/05/10 16:46:48 mauro Exp $', sets, pl); +end + +%-------------------------------------------------------------------------- +% Get Default Plist +%-------------------------------------------------------------------------- + +function plout = getDefaultPlist() + persistent pl; + if ~exist('pl', 'var') || isempty(pl) + pl = buildplist(); + end + plout = pl; +end + +function pl = buildplist() + + pl = plist(); + + % method + p = param({'method',['method for binning. Choose from:<ul>', ... + '<li>mean</li>', ... + '<li>median</li>', ... + '<li>max</li>', ... + '<li>min</li>', ... + '<li>rms</li>', ... + '<li>weighted mean (weights can be input or are taken from data dy)</li></ul>']}, ... + {1, {'MEAN', 'MEDIAN', 'MAX', 'MIN', 'RMS', 'WMEAN'}, paramValue.SINGLE}); + pl.append(p); + + % x-scale + p = param({'xscale',['scaling of binning. Choose from:<ul>', ... + '<li>log - logaritmic</li>', ... + '<li>lin - linear</li></ul>']}, {1, {'LOG', 'LIN'}, paramValue.SINGLE}); + pl.append(p); + + % resolution + p = param({'resolution',['When setting logaritmic x scale, it sets the number of points per decade.<br>' ... + 'When setting linear x scale, it sets the number of points.']}, paramValue.DOUBLE_VALUE(10)); + pl.append(p); + + % x_vals + p = param({'xvals',['List of x values to evaluate the binning between.<br>', ... + 'It may be a vector or an ao, in which case it will take the x field']}, paramValue.DOUBLE_VALUE([])); + pl.append(p); + + % weights + p = param({'weights', ['List of weights for the case of weighted mean.<br>', ... + 'If empty, weights will be taken from object(s) dy field as w = 1/dy^2']}, paramValue.DOUBLE_VALUE([])); + pl.append(p); + + % range + p = param({'range', ['Range of x where to operate.<br>', ... + 'If empty, the whole data set will be used']}, paramValue.DOUBLE_VALUE([])); + pl.append(p); + + % inherit_dy + p = param({'inherit_dy', ['Choose what to do in the case of mean, and bins with only one point. Choose from:<ul>', ... + '<li>''yes'' - take the uncertainty from the original data, if defined</li>', ... + '<li>''no'' - set it to Inf so it weighs 0 in averaged means</li></ul>' ... + ]}, paramValue.YES_NO); + pl.append(p); +end +% END