Mercurial > hg > ltpda
diff m-toolbox/classes/@ao/cdfplot.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/classes/@ao/cdfplot.m Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,270 @@ +% CDFPLOT makes cumulative distribution plot +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% DESCRIPTION: Make cumulative distribution plot and calculate confidence +% intervals on the basis of the Kolmogorov-Smirnov test. +% +% CALL: cdfplot(a, pl) +% +% INPUT: a: are real valued AO +% +% +% <a href="matlab:utils.helper.displayMethodInfo('ao', 'kstest')">Parameters Description</a> +% +% VERSION: $Id: cdfplot.m,v 1.3 2011/07/08 09:45:35 luigi Exp $ +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +function varargout = cdfplot(varargin) + + % Check if this is a call for parameters + if utils.helper.isinfocall(varargin{:}) + varargout{1} = getInfo(varargin{3}); + return + end + + import utils.const.* + utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); + + % Collect input variable names + in_names = cell(size(varargin)); + for ii = 1:nargin,in_names{ii} = inputname(ii);end + + % Collect all AOs and plists + [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); + pl = utils.helper.collect_objects(varargin(:), 'plist', in_names); + + % combine plists + if isempty(pl) + model = 'empirical'; + else + model = lower(find(pl, 'TESTDISTRIBUTION')); + if isempty(model) + model = 'empirical'; + pl.pset('TESTDISTRIBUTION', model); + end + end + + pl = parse(pl, getDefaultPlist(model)); + + % get parameters + conf = find(pl, 'CONFLEVEL'); + if isa(conf, 'ao') + conf = conf.y; + end + shapeparam = find(pl, 'SHAPEPARAM'); + if isa(shapeparam, 'ao') + shapeparam = shapeparam.y; + end + ftsize = find(pl, 'FONTSIZE'); + if isa(ftsize, 'ao') + ftsize = ftsize.y; + end + lwidth = find(pl, 'LINEWIDTH'); + if isa(lwidth, 'ao') + lwidth = lwidth.y; + end + + % switch among test type + switch lower(model) + case 'normal' + mmean = find(pl, 'MEAN'); + if isa(mmean, 'ao') + mmean = mmean.y; + end + sstd = find(pl, 'STD'); + if isa(sstd, 'ao') + sstd = sstd.y; + end + distparams = [mmean, sstd]; + dist = 'normdist'; + case 'chi2' + ddof = find(pl, 'DOF'); + if isa(ddof, 'ao') + ddof = ddof.y; + end + distparams = [ddof]; + dist = 'chi2dist'; + case 'f' + dof1 = find(pl, 'DOF1'); + if isa(dof1, 'ao') + dof1 = dof1.y; + end + dof2 = find(pl, 'DOF2'); + if isa(dof2, 'ao') + dof2 = dof2.y; + end + distparams = [dof1, dof2]; + dist = 'fdist'; + case 'gamma' + shp = find(pl, 'SHAPE'); + if isa(shp, 'ao') + shp = shp.y; + end + scl = find(pl, 'SCALE'); + if isa(scl, 'ao') + scl = scl.y; + end + distparams = [shp, scl]; + dist = 'gammadist'; + otherwise + distparams = []; + end + + + % run test + switch lower(model) + case 'empirical' + + % build parameters struct + params = struct(... + 'conflevel',conf,... + 'FontSize',ftsize,... + 'LineWidth',lwidth); + + y1 = as(1).y; + % run over input aos + for ii=1:numel(as)-1 + y2 = as(ii+1).y; + if size(y1,1)~=size(y2,1) + % reshape + y2 = y2.'; + end + utils.math.cdfplot(y1, y2, params); + + end + + otherwise + + % build parameters struct + params = struct(... + 'ProbDist',dist,... + 'ShapeParam',shapeparam,... + 'params',distparams,... + 'conflevel',conf,... + 'FontSize',ftsize,... + 'LineWidth',lwidth); + + % run over input aos + for ii=1:numel(as) + + utils.math.cdfplot(as(ii).y, [], params); + + end + + end + + +end + + +%-------------------------------------------------------------------------- +% Get Info Object +%-------------------------------------------------------------------------- +function ii = getInfo(varargin) + if nargin == 1 && strcmpi(varargin{1}, 'None') + sets = {}; + pl = []; + elseif nargin == 1 && ~isempty(varargin{1}) && ischar(varargin{1}) + sets{1} = varargin{1}; + pl = getDefaultPlist(sets{1}); + else + sets = SETS(); + % get plists + pl(size(sets)) = plist; + for kk = 1:numel(sets) + pl(kk) = getDefaultPlist(sets{kk}); + end + end + % Build info object + ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: cdfplot.m,v 1.3 2011/07/08 09:45:35 luigi Exp $', sets, pl); +end + + +%-------------------------------------------------------------------------- +% Defintion of Sets +%-------------------------------------------------------------------------- + +function out = SETS() + out = {... + 'empirical', ... + 'normal', ... + 'chi2', ... + 'f', ... + 'gamma' ... + }; +end + +%-------------------------------------------------------------------------- +% Get Default Plist +%-------------------------------------------------------------------------- +function plout = getDefaultPlist(set) + persistent pl; + persistent lastset; + if ~exist('pl', 'var') || isempty(pl) || ~strcmp(lastset, set) + pl = buildplist(set); + lastset = set; + end + plout = pl; +end + +function plo = buildplist(set) + plo = plist(); + + p = param({'TESTDISTRIBUTION', ['test data are compared with the given'... + 'test distribution. Available choices are:<ol>'... + '<li>EMPIRICAL test the all the input object (starting from the second) against the first object.</li>'... + '<li>NORMAL test all the input objects against the Normal distribution</li>'... + '<li>CHI2 test all the input objects against the Chi square distribution</li>'... + '<li>F test all the input objects against the F distribution</li>'... + '<li>GAMMA test all the input objects against the Gamma distribution</li></ol>']}, ... + {1, {'EMPIRICAL', 'NORMAL', 'CHI2', 'F', 'GAMMA'}, paramValue.SINGLE}); + plo.append(p); + + p = param({'CONFLEVEL', 'Confidence level for confidence interval calculations.'},... + paramValue.DOUBLE_VALUE(0.95)); + plo.append(p); + + p = param({'SHAPEPARAM', ['In the case of comparison of a data series with a'... + 'theoretical distribution and the data series is composed of correlated'... + 'elements. K can be adjusted with a shape parameter in order to recover'... + 'test fairness [3]. In such a case the test is performed for K* = Phi * K.'... + 'Phi is the corresponding Shape parameter. The shape parameter depends on'... + 'the correlations and on the significance value. It does not depend on'... + 'data length.']}, paramValue.DOUBLE_VALUE(1)); + plo.append(p); + + p = param({'FONTSIZE', 'Font size for axis'}, paramValue.DOUBLE_VALUE(22)); + plo.append(p); + + p = param({'LINEWIDTH', 'Line Width'}, paramValue.DOUBLE_VALUE(2)); + plo.append(p); + + switch lower(set) + case 'empirical' + % do nothing + case 'normal' + p = param({'MEAN', ['The mean of the normal distribution']}, paramValue.DOUBLE_VALUE(0)); + plo.append(p); + p = param({'STD', ['The standard deviation of the normal distribution']}, paramValue.DOUBLE_VALUE(1)); + plo.append(p); + case 'chi2' + p = param({'DOF', ['Degrees of freedom of the chi square distribution']}, paramValue.DOUBLE_VALUE(2)); + plo.append(p); + case 'f' + p = param({'DOF1', ['First degree of freedom of the F distribution']}, paramValue.DOUBLE_VALUE(2)); + plo.append(p); + p = param({'DOF2', ['Second degree of freedom of the F distribution']}, paramValue.DOUBLE_VALUE(2)); + plo.append(p); + case 'gamma' + p = param({'SHAPE', ['Shape parameter (k) of the Gamma distribution']}, paramValue.DOUBLE_VALUE(2)); + plo.append(p); + p = param({'SCALE', ['Scale parameter (theta) of the Gamma distribution']}, paramValue.DOUBLE_VALUE(2)); + plo.append(p); + otherwise + end + + + + +end