diff m-toolbox/classes/@ao/consolidate.m @ 0:f0afece42f48

Import.
author Daniele Nicolodi <nicolodi@science.unitn.it>
date Wed, 23 Nov 2011 19:22:13 +0100
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/m-toolbox/classes/@ao/consolidate.m	Wed Nov 23 19:22:13 2011 +0100
@@ -0,0 +1,251 @@
+% CONSOLIDATE resamples all input AOs onto the same time grid.
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%
+% CONSOLIDATE resamples all input AOs onto the same time grid and truncates all
+%             time-series to start at the maximum start time of the inputs and end
+%             at the minimum stop time of the inputs.
+% 
+% ALGORITHM:
+%             1) Drop duplicate samples (ao/dropduplicates)
+%             2) Interpolate missing samples (ao/interpmissing)
+%             3) Fix uneven sample rate using interpolate (ao/fixfs)
+%             4) Resample to same fs, either max or specified (ao/resample
+%                or ao/interp depending on ratio of old and new sample
+%                rate)
+%             5) Truncate all vectors to minimum overlap of time-series
+%                (ao/split)
+%             6) Resample on to the same timing grid (ao/interp)
+%             7) Truncate all vectors to same number of samples to correct for 
+%                any rounding errors in previous steps (ao/select)
+%
+% CALL:       >> bs = consolidate(as)
+%
+% INPUTS:     as  - array of at least two time-series analysis objects
+%             pl  - parameter list (see below)
+%
+% OUTPUTS:    bs  - array of analysis objects, one for each input
+%
+% <a href="matlab:utils.helper.displayMethodInfo('ao', 'consolidate')">Parameters Description</a>
+%
+% VERSION:     $Id: consolidate.m,v 1.32 2011/04/08 08:56:13 hewitson Exp $
+%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%           't'     - specify a new time vector to resample on to. This
+%                     will be truncated to fit within the maximum start
+%                     time and minimum stop time of the inputs.
+%      or
+
+function varargout = consolidate(varargin)
+
+  % Check if this is a call for parameters
+  if utils.helper.isinfocall(varargin{:})
+    varargout{1} = getInfo(varargin{3});
+    return
+  end
+
+  import utils.const.*
+  utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename);
+  
+  % Collect input variable names
+  in_names = cell(size(varargin));
+  for ii = 1:nargin,in_names{ii} = inputname(ii);end
+
+  % Collect all AOs and plists
+  [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names);
+  [pl, pl_invars] = utils.helper.collect_objects(varargin(:), 'plist', in_names);
+
+  if numel(as) < 2
+    error('### Consolidate requires at least two time-series AOs to work.');
+  end
+  
+  if nargout == 0
+    error('### Consolidate cannot be used as a modifier. Please give an output variable.');
+  end
+  
+  % Decide on a deep copy or a modify
+  bs = copy(as, nargout);
+  na = numel(bs);
+
+  % Combine plists
+  pl = parse(pl, getDefaultPlist);
+
+  % Get only tsdata AOs
+  inhists = [];
+  for j=1:na
+    if ~isa(bs(j).data, 'tsdata')
+      bs(j) = [];
+      warning('!!! Skipping AO %s - it''s not a time-series AO.', bs(j).name);
+    else
+      % gather the input history objects
+      inhists = [inhists bs(j).hist];
+    end
+  end
+
+  % If fs is specified, use it. Otherwise, use max of all
+  % input AOs.
+  fs = find(pl, 'fs');
+  if isempty(fs)
+    % compute max fs
+    fs = 0;
+    for j=1:na
+      if bs(j).data.fs > fs
+        fs = bs(j).data.fs;
+      end
+    end
+  end
+  utils.helper.msg(msg.PROC2, 'resampling all time-series to an fs of %f', fs);
+  
+  %----------------- Drop all repeated samples
+  utils.helper.msg(msg.PROC1, 'drop duplicates');
+  for j=1:na
+    utils.helper.msg(msg.PROC2, 'processing %s', bs(j).name);
+    dropduplicates(bs(j),pl);
+  end
+
+  %----------------- Interpolate all missing samples
+  utils.helper.msg(msg.PROC1, 'interpolate missing samples');
+  for j=1:na
+    utils.helper.msg(msg.PROC2, 'processing %s', bs(j).name);    
+    interpmissing(bs(j),pl.pset('method', find(pl, 'interp_method')));
+  end
+
+  
+  %----------------- Fix uneven sampling
+  utils.helper.msg(msg.PROC1, 'fixing uneven sample rates');
+  for j=1:na
+    utils.helper.msg(msg.PROC2, 'processing %s', bs(j).name);
+    fixfs(bs(j),pl.pset('method', find(pl, 'fixfs_method')));
+  end
+  %----------------- Resample all vectors to same fs
+  utils.helper.msg(msg.PROC1, 'resample to same fs');
+
+  for j=1:na
+    % Check the resampling factor
+    [P,Q] = utils.math.intfact(fs,bs(j).data.fs);
+    if P > 100 || Q > 100
+      utils.helper.msg(msg.PROC2, 'resampling factor too high [%g/%g]. Trying interpolation', P, Q);
+      N  = length(bs(j).data.getX);
+      t  = linspace(0, (P*N/Q-1)/fs, P*N/Q);
+      interp(bs(j), plist('vertices', t));
+    else
+      resample(bs(j), plist('fsout', fs));
+    end
+  end
+
+  %---------------- Time properties of AOs
+  % Find max start time
+  start = 0;
+  for j=1:na
+    dstart = bs(j).data.t0.utc_epoch_milli/1000 + bs(j).data.getX(1);
+    if dstart > start
+      start = dstart;
+    end
+  end
+
+  % Find min stop time
+  stop = 1e20;
+  for j=1:na
+    dstop = floor(bs(j).data.t0.utc_epoch_milli/1000 + bs(j).data.getX(end));
+    if dstop < stop
+      stop = dstop;
+    end
+  end
+
+  %----------------- Truncate all vectors
+  utils.helper.msg(msg.PROC1, 'truncate all vectors');
+  utils.helper.msg(msg.PROC2, 'truncating vectors on interval [%.4f,%.4f]', start, stop);
+
+  % split each ao
+  bs = split(bs, plist('timespan', timespan(start, stop)));
+  
+  %----------------- Resample all vectors on to the same grid
+  utils.helper.msg(msg.PROC1, 'resample to same grid');
+  % compute new time grid
+  
+  % get the grid from the first AO
+  for j=1:na
+    toff = start - bs(j).t0.utc_epoch_milli/1000;
+    N = length(bs(j).data.getX);
+    t = linspace(toff, toff+(N-1)/fs, N);
+    interp(bs(j), plist('vertices', t));
+  end
+  
+  % Now ensure that we have the same data length
+  ns = realmax;
+  for jj=1:na
+    if len(bs(jj)) < ns
+      ns = len(bs(jj));
+    end
+  end
+  
+  bs = select(bs, 1:ns);
+  
+  nsecs = [];
+  for j=1:na
+    if isempty(nsecs)
+      nsecs = bs(j).data.nsecs;
+    end
+    if nsecs ~= bs(j).data.nsecs
+      error('### Something went wrong with the truncation. Vectors don''t span the same time period.');
+    end
+  end
+
+  %----------------- Set history on output AOs
+
+  for j=1:na
+    bs(j).name = sprintf('%s(%s)', mfilename, ao_invars{j});
+    bs(j).addHistory(getInfo('None'), pl, ao_invars(j), inhists(j));
+  end
+
+  % Set output
+  if nargout == numel(bs)
+    % List of outputs
+    for ii = 1:numel(bs)
+      varargout{ii} = bs(ii);
+    end
+  else
+    % Single output
+    varargout{1} = bs;
+  end
+end
+
+%--------------------------------------------------------------------------
+% Get Info Object
+%--------------------------------------------------------------------------
+function ii = getInfo(varargin)
+  if nargin == 1 && strcmpi(varargin{1}, 'None')
+    sets = {};
+    pl   = [];
+  else
+    sets = {'Default'};
+    pl   = getDefaultPlist;
+  end
+  % Build info object
+  ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: consolidate.m,v 1.32 2011/04/08 08:56:13 hewitson Exp $', sets, pl);
+  ii.setModifier(false);
+  ii.setArgsmin(2);
+end
+
+%--------------------------------------------------------------------------
+% Get Default Plist
+%--------------------------------------------------------------------------
+
+function plout = getDefaultPlist()
+  persistent pl;  
+  if exist('pl', 'var')==0 || isempty(pl)
+    pl = buildplist();
+  end
+  plout = pl;  
+end
+
+function pl_default = buildplist()
+  pl_default = combine(...
+    plist({'fs','The target sampling frequency for consolidate'}, paramValue.EMPTY_DOUBLE),...
+    plist({'interp_method', 'The method for the interpolation step'}, {2, {'nearest', 'linear', 'spline', 'cubic'}, paramValue.SINGLE}), ...
+    plist({'fixfs_method', 'The method for the fixfs step'}, {1, {'Time', 'Samples'}, paramValue.SINGLE}), ...
+    ao.getInfo('dropduplicates').plists,...
+    ao.getInfo('interpmissing').plists,...
+    ao.getInfo('fixfs').plists);
+end
+