Mercurial > hg > ltpda
diff m-toolbox/classes/@ao/corr.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/classes/@ao/corr.m Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,123 @@ +% CORR estimate linear correlation coefficients. +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% DESCRIPTION: CORR estimate linear correlation coefficients. +% +% The method returns a P-by-P matrix containing the pairwise +% linear correlation coefficient between each pair of columns +% in the N-by-P matrix X formed from the length-N vectors of +% the P input AOs. The coefficients are calculated using +% Pearson's product-moment method. +% +% CALL: >> c = corr(a,b) +% >> c = corr(a,b,c,...) +% +% INPUTS: a,b,c,... - input analysis objects +% +% OUTPUTS: c - output analysis object containing the correlation matrix. +% +% <a href="matlab:utils.helper.displayMethodInfo('ao', 'corr')">Parameters Description</a> +% +% VERSION: $Id: corr.m,v 1.9 2011/04/08 08:56:18 hewitson Exp $ +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +function varargout = corr(varargin) + + % Check if this is a call for parameters + if utils.helper.isinfocall(varargin{:}) + varargout{1} = getInfo(varargin{3}); + return + end + + import utils.const.* + utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); + + % Collect input variable names + in_names = cell(size(varargin)); + for ii = 1:nargin,in_names{ii} = inputname(ii);end + + % Collect all AOs and plists + [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); + + if nargout == 0 + error('### corr cannot be used as a modifier. Please give an output variable.'); + end + + if numel(as) < 2 + error('### corr requires at least two input AOs to work.'); + end + + % Convolute the data + smat = []; + inunits = unit; + name = ''; + desc = ''; + for jj=1:numel(as) + smat = [smat as(jj).data.getY]; + inunits = inunits .* as(jj).data.yunits; + name = strcat(name, [',' ao_invars{jj}]); + desc = strcat(desc, [' ' as(jj).description]); + end + desc = strtrim(desc); + + % compute the sample correlation using Pearson's product-moment coefficient + Cv = cov(smat); + C = zeros(size(Cv)); + for ii=1:size(Cv, 1) + for kk=1:size(Cv,2) + C(ii,kk) = Cv(ii,kk) ./ (sqrt(Cv(ii,ii))*sqrt(Cv(kk,kk))); + end + end + + bs = ao(cdata(C)); + bs.name = sprintf('corr(%s)', name(2:end)); + bs.description = desc; + bs.data.setYunits(inunits); + bs.addHistory(getInfo('None'), getDefaultPlist, ao_invars, [as(:).hist]); + + % Set output + if nargout == numel(bs) + % List of outputs + for ii = 1:numel(bs) + varargout{ii} = bs(ii); + end + else + % Single output + varargout{1} = bs; + end +end + +%-------------------------------------------------------------------------- +% Get Info Object +%-------------------------------------------------------------------------- +function ii = getInfo(varargin) + if nargin == 1 && strcmpi(varargin{1}, 'None') + sets = {}; + pls = []; + else + sets = {'Default'}; + pls = getDefaultPlist; + end + % Build info object + ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: corr.m,v 1.9 2011/04/08 08:56:18 hewitson Exp $', sets, pls); + ii.setModifier(false); + ii.setArgsmin(2); +end + +%-------------------------------------------------------------------------- +% Get Default Plist +%-------------------------------------------------------------------------- + +function plout = getDefaultPlist() + persistent pl; + if exist('pl', 'var')==0 || isempty(pl) + pl = buildplist(); + end + plout = pl; +end + +function pl_default = buildplist() + pl_default = plist.EMPTY_PLIST; +end +