Mercurial > hg > ltpda
diff m-toolbox/classes/@ao/delayEstimate.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/classes/@ao/delayEstimate.m Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,166 @@ +% DELAYESTIMATE estimates the delay between two AOs +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% DESCRIPTION: DELAYESTIMATE returns an estimate of the delay between the two +% input analysis objects. Different weights in frequency +% domain can be used. +% +% CALL: bs = delayEstimate(a1,a2,pl) +% +% INPUTS: a1 - input analysis objects +% a2 - delayed analysis objects +% pl - input parameter list +% +% OUTPUTS: bs - analysis object with the delay (as cdata) +% +% <a href="matlab:utils.helper.displayMethodInfo('ao', 'delayEstimate')">Parameters Description</a> +% +% VERSION: $Id: delayEstimate.m,v 1.6 2011/04/08 08:56:15 hewitson Exp $ +% +% HISTORY: 15-10-09 M Nofrarias +% Creation +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + + +function varargout = delayEstimate(varargin) + + % Check if this is a call for parameters + if utils.helper.isinfocall(varargin{:}) + varargout{1} = getInfo(varargin{3}); + return + end + + import utils.const.* + utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); + + % Collect input variable names + in_names = cell(size(varargin)); + for ii = 1:nargin,in_names{ii} = inputname(ii);end + + % Collect all AOs + [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); + pl = utils.helper.collect_objects(varargin(:), 'plist', in_names); + + % Decide on a deep copy or a modify + bs = copy(as, nargout); + + % Combine plists + pl = parse(pl, getDefaultPlist); + + % get frequency weight + weight = find(pl, 'weight'); + + N = len(bs(1)); + T = bs(1).x(end); + fs = bs(1).fs; + % zeropad to avoid circular convolution in ifft + bs(1).zeropad; + bs(2).zeropad; + % compute spectral density, scale applied after to avoid round-off errors + scale = fs/N; + Gx11 = conj(fft(bs(1).y)).*fft(bs(1).y); + Gx11 = Gx11*scale; + Gx12 = conj(fft(bs(1).y)).*fft(bs(2).y); + Gx12 = Gx12*scale; + Gx22 = conj(fft(bs(2).y)).*fft(bs(2).y); + Gx22 = Gx22*scale; + % frequencies for two-sided spectrum + f = linspace(-fs,fs,2*N); + % select weight + if strcmp(weight,'roth') + weight = Gx11; + elseif strcmp(weight,'scot') + weight = sqrt(Gx11.* Gx22); + elseif strcmp(weight,'scc') + weight = 1; + elseif strcmp(weight,'phat') + weight = abs(Gx12); + elseif strcmp(weight,'eckart') + weight = 1; + elseif strcmp(weight,'ML') + weight = 1; + else + error('### Unknown value for ''weight'' parameter ' ) + end + % compute unscaled correlation function + Ru = ifft(Gx12./weight); + % lag= 0:\deltat*(N-1) + % n= 1:N/2-1 + r = linspace(0,T-1/fs,length(Ru)/2-1); + % scaling to correct zeropad bias + R = (N./(N-r))'.*Ru(1:length(Ru)/2-1); + % get maximum + [m,ind] = max(R); + del = r(ind); + % plot if required + plt = find(pl, 'plot'); + if plt + Rxy = ao(xydata(r,R)); + Rxy.setName(sprintf('Correlation(%s,%s)', ao_invars{1},ao_invars{2})) + iplot(Rxy) + end + + % create new output cdata + cd = cdata(del); + % add unitss + cd.yunits = 's'; + % update AO + c = ao(cd); + % add error + % bs(jj).data.dy = dev; + % Add name + c.name = sprintf('delayEst(%s,%s)', ao_invars{1},ao_invars{2}); + % Add history + c.addHistory(getInfo('None'), pl, [ao_invars(:)], [bs(:).hist]); + + % set output + varargout{1} = c; + +end + +%-------------------------------------------------------------------------- +% Get Info Object +%-------------------------------------------------------------------------- +function ii = getInfo(varargin) + if nargin == 1 && strcmpi(varargin{1}, 'None') + sets = {}; + pl = []; + else + sets = {'Default'}; + pl = getDefaultPlist; + end + % Build info object + ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: delayEstimate.m,v 1.6 2011/04/08 08:56:15 hewitson Exp $', sets, pl); +end + +%-------------------------------------------------------------------------- +% Get Default Plist +%-------------------------------------------------------------------------- + +function plout = getDefaultPlist() + persistent pl; + if exist('pl', 'var')==0 || isempty(pl) + pl = buildplist(); + end + plout = pl; +end + +function pl = buildplist() + pl = plist(); + % method + p = param({'weight',['scaling of output. Choose from:<ul>', ... + '<li>scc - </li>', ... + '<li>roth - </li>', ... + '<li>scot - </li>', ... + '<li>phat - </li>', ... + '<li>eckart - </li>', ... + '<li>ML - </li></ul>']}, {1, {'scc','roth', 'scot','phat','eckart','ML'}, paramValue.SINGLE}); + pl.append(p); + % Plot + p = param({'Plot', 'Plot the correlation function'}, ... + {2, {'true', 'false'}, paramValue.SINGLE}); + pl.append(p); +end +% END +