Mercurial > hg > ltpda
diff m-toolbox/classes/@ao/dropduplicates.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/classes/@ao/dropduplicates.m Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,127 @@ +% DROPDUPLICATES drops all duplicate samples in time-series AOs. +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% DROPDUPLICATES drops all duplicate samples in time-series AOs. Duplicates +% are identified by having a two consecutive time stamps +% closer than a set tolerance. +% +% CALL: bs = dropduplicates(as) +% +% INPUTS: as - array of analysis objects +% pl - parameter list (see below) +% +% OUTPUTS: bs - array of analysis objects, one for each input +% +% <a href="matlab:utils.helper.displayMethodInfo('ao', 'dropduplicates')">Parameters Description</a> +% +% VERSION: $Id: dropduplicates.m,v 1.24 2011/04/08 08:56:13 hewitson Exp $ +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +function varargout = dropduplicates(varargin) + + % Check if this is a call for parameters + if utils.helper.isinfocall(varargin{:}) + varargout{1} = getInfo(varargin{3}); + return + end + + import utils.const.* + utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); + + % Collect input variable names + in_names = cell(size(varargin)); + for ii = 1:nargin,in_names{ii} = inputname(ii);end + + % Collect all AOs + [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); + [pl, pl_invars] = utils.helper.collect_objects(varargin(:), 'plist', in_names); + + % Decide on a deep copy or a modify + bs = copy(as, nargout); + + % Combine plists + pl = parse(pl, getDefaultPlist); + + % Get tolerance + tol = find(pl, 'tol'); + + % Get only tsdata AOs + for j=1:numel(bs) + if isa(bs(j).data, 'tsdata') + d = abs(diff(bs(j).data.getX)); + idx = find(d<tol); + utils.helper.msg(msg.PROC1, 'found %d duplicate samples', numel(idx)); + % Wipe out x samples + if ~isempty(bs(j).data.x) + bs(j).data.x(idx) = []; + end + % Wipe out y samples + bs(j).data.y(idx) = []; + % Wipe out error + if numel(bs(j).data.dx) > 1 + bs(j).data.dx(idx) = []; + end + if numel(bs(j).data.dy) > 1 + bs(j).data.dy(idx) = []; + end + % set name + bs(j).name = sprintf('dropduplicates(%s)', ao_invars{j}); + % Add history + bs(j).addHistory(getInfo('None'), pl, ao_invars(j), bs(j).hist); + else + warning('!!! Skipping AO %s - it''s not a time-series AO.', ao_invars{j}); + bs(j) = []; + end + end + + % Set output + if nargout == numel(bs) + % List of outputs + for ii = 1:numel(bs) + varargout{ii} = bs(ii); + end + else + % Single output + varargout{1} = bs; + end +end + +%-------------------------------------------------------------------------- +% Get Info Object +%-------------------------------------------------------------------------- +function ii = getInfo(varargin) + if nargin == 1 && strcmpi(varargin{1}, 'None') + sets = {}; + pl = []; + else + sets = {'Default'}; + pl = getDefaultPlist; + end + % Build info object + ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: dropduplicates.m,v 1.24 2011/04/08 08:56:13 hewitson Exp $', sets, pl); +end + +%-------------------------------------------------------------------------- +% Get Default Plist +%-------------------------------------------------------------------------- + +function plout = getDefaultPlist() + persistent pl; + if exist('pl', 'var')==0 || isempty(pl) + pl = buildplist(); + end + plout = pl; +end + +function pl = buildplist() + pl = plist(); + + % tol + p = param({'tol','The time interval tolerance to consider two consecutive samples as duplicates.'}, ... + {1, {5e-3}, paramValue.OPTIONAL}); + pl.append(p); + +end + +