Mercurial > hg > ltpda
diff m-toolbox/classes/@ao/dsmean.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/classes/@ao/dsmean.m Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,120 @@ +% DSMEAN performs a simple downsampling by taking the mean of every N samples. +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% DESCRIPTION: DSMEAN performs a simple downsampling by taking the mean of +% every N samples. The downsample factor (N) is taken as +% round(fs/fsout). The original vector is then truncated to a +% integer number of segments of length N. It is the reshaped +% to N x length(y)/N. Then the mean is taken. +% +% CALL: b = dsmean(a, pl) +% +% <a href="matlab:utils.helper.displayMethodInfo('ao', 'dsmean')">Parameters Description</a> +% +% VERSION: $Id: dsmean.m,v 1.23 2011/05/11 08:42:19 mauro Exp $ +% +% HISTORY: 20-04-08 M Hewitson +% Creation +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +function varargout = dsmean(varargin) + + % Check if this is a call for parameters + if utils.helper.isinfocall(varargin{:}) + varargout{1} = getInfo(varargin{3}); + return + end + + import utils.const.* + utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); + + % Collect input variable names + in_names = cell(size(varargin)); + for ii = 1:nargin,in_names{ii} = inputname(ii);end + + % Collect all AOs + [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); + pl = utils.helper.collect_objects(varargin(:), 'plist', in_names); + + % Decide on a deep copy or a modify + bs = copy(as, nargout); + + % Combine plists + pl = parse(pl, getDefaultPlist); + + % Extract necessary parameters + fsout = find(pl, 'fsout'); + + % Loop over input AOs + for jj = 1:numel(bs) + if ~isa(bs(jj).data, 'tsdata') + warning('!!! Can only downsample time-series (tsdata) objects. Skipping AO %s', ao_invars{j}); + else + % downsample factor + dsf = round(bs(jj).data.fs/fsout); + if dsf < 1 + error('### I can''t downsample - the sample rate is already lower than the requested.'); + elseif dsf>1 + % Do Y data + n = floor(length(bs(jj).data.y) / dsf); + y = bs(jj).data.y(1:n*dsf); + % reshape and take mean + bs(jj).data.setY(mean(reshape(y, dsf, length(y)/dsf))); + + % If we have an x we should resample it + if ~isempty(bs(jj).data.x) + x = bs(jj).data.x(1:n*dsf); + % reshape and take mean + bs(jj).data.setX(mean(reshape(x, dsf, length(x)/dsf))); + else + % otherwise we need to adjust t0 + bs(jj).data.setT0(bs(jj).data.t0 + dsf/(2*bs(jj).data.fs)); + end + end + % Build output AO + bs(jj).data.setFs(fsout); + bs(jj).name = sprintf('dsmean(%s)', ao_invars{jj}); + % Add history + bs(jj).addHistory(getInfo('None'), pl, ao_invars(jj), bs(jj).hist); + % Clear the errors since they don't make sense anymore + clearErrors(bs(jj)); + end + end + + % Set output + varargout = utils.helper.setoutputs(nargout, bs); +end + +%-------------------------------------------------------------------------- +% Get Info Object +%-------------------------------------------------------------------------- +function ii = getInfo(varargin) + if nargin == 1 && strcmpi(varargin{1}, 'None') + sets = {}; + pl = []; + else + sets = {'Default'}; + pl = getDefaultPlist(); + end + % Build info object + ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: dsmean.m,v 1.23 2011/05/11 08:42:19 mauro Exp $', sets, pl); +end + +%-------------------------------------------------------------------------- +% Get Default Plist +%-------------------------------------------------------------------------- + +function plout = getDefaultPlist() + persistent pl; + if ~exist('pl', 'var') || isempty(pl) + pl = buildplist(); + end + plout = pl; +end + +function pl = buildplist() + pl = plist({'fsout', 'The output sample rate.'}, {1, {10}, paramValue.OPTIONAL}); +end + +