Mercurial > hg > ltpda
diff m-toolbox/classes/@ao/fngen.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/classes/@ao/fngen.m Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,181 @@ +% FNGEN creates an arbitrarily long time-series based on the input PSD. +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% DESCRIPTION: FNGEN creates an arbitrarily long time-series based on the input PSD. +% +% CALL: b = fngen(axx, pl) +% +% PARAMETERS: +% 'Nsecs' - The number of seconds to produce +% [default: inverse of PSD length] +% 'Win' - The spectral window to use for blending segments +% [default: Kaiser -150dB] +% +% +% NOTE: this function requires the Statistics Toolbox in order to create +% a chi^2 distributed random variable. +% +% <a href="matlab:utils.helper.displayMethodInfo('ao', 'fngen')">Parameters Description</a> +% +% VERSION: $Id: fngen.m,v 1.33 2011/04/08 08:56:16 hewitson Exp $ +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +function varargout = fngen(varargin) + + % Check if this is a call for parameters + if utils.helper.isinfocall(varargin{:}) + varargout{1} = getInfo(varargin{3}); + return + end + + import utils.const.* + utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); + + % Collect input variable names + in_names = cell(size(varargin)); + for ii = 1:nargin,in_names{ii} = inputname(ii);end + + % Collect all AOs and plists + [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); + pl = utils.helper.collect_objects(varargin(:), 'plist', in_names); + + if nargout == 0 + error('### fngen cannot be used as a modifier. Please give an output variable.'); + end + + % combine plists + pl = parse(pl, getDefaultPlist()); + + % Extract necessary parameters + Nsecs = find(pl, 'Nsecs'); + swin = find(pl, 'win'); + + % Loop over input AOs + bs = []; + for j=1:numel(as) + if ~isa(as(j).data, 'fsdata') + warning('!!! %s expects ao/fsdata objects. Skipping AO %s', mfilename, as(j).name); + else + % Properties of the input PSD + N = 2*(length(as(j).data.y)-1); + fs = as(j).data.x(end)*2; + % Extract Fourier components + Ak = sqrt(N*as(j).data.getY*fs); + Ak = [Ak; Ak(end-1:-1:2)]; % make two-sided + % redesign input window for this length + switch lower(swin.type) + case 'kaiser' + swin = specwin('Kaiser', N, swin.psll); + otherwise + swin = specwin(swin.type, N); + end + % Compute time-series segments + Olap = 1-swin.rov/100; + win = [swin.win].'; + segLen = N/fs; + if segLen > Nsecs + cNsecs = 2*segLen; + else + cNsecs = Nsecs; + end + Nsegs = 1+floor(cNsecs/segLen/Olap); + + % Prepare for generation + rphi = zeros(N,1); % Empty vector for random phases + xs = zeros(fs*(cNsecs+segLen), 1); % Large empty vector for new time-series + e1 = 1; e2 = segLen*fs; % Indices into large vector + step = round(segLen*fs*Olap); % step size between each new segment + lxs = length(xs); + + % Loop over segments + for s=1:Nsegs + % Generate random phase vector + rphi(2:N/2) = pi*rand(1,N/2-1); % First half + rphi(N/2+1) = pi*round(rand); % mid point + rphi(N/2+2:N) = -rphi(N/2:-1:2); % reflected half + %---- Compute Fourier amplitudes + % Use chi^2 distribution to randomize amplitudes. + % - from Percival and Walden: S_est = S.*chi2rnd(2)/2 + % so A_est = A.*sqrt(chi2rnd(2)/2) + % Here we take the measured input data to be a good estimate of + % the underlying power spectrum + X = (Ak.*sqrt(chi2rnd(2)/2)) .*exp(1i.*rphi); + % Inverse FFT + x = ifft(X, 'symmetric'); + % overlap the segments + xs(e1:e2) = xs(e1:e2) + win.*x; + % increase step + e1 = e1 + step; + e2 = e2 + step; + if e2>lxs + break + end + end + % Make ao from the segment of data we want + e1 = fs*segLen/2; + e2 = fs*(Nsecs+segLen/2)-1; + b = ao(tsdata(xs(e1:e2).', fs)); + b.name = sprintf('fngen(%s)', ao_invars{j}); + b.data.setXunits('s'); + % Add history + b.addHistory(getInfo('None'), pl, ao_invars(j), as(j).hist); + % Add to outputs + bs = [bs b]; + end + end + + % Set output + if nargout == numel(bs) + % List of outputs + for ii = 1:numel(bs) + varargout{ii} = bs(ii); + end + else + % Single output + varargout{1} = bs; + end + +end + +%-------------------------------------------------------------------------- +% Get Info Object +%-------------------------------------------------------------------------- +function ii = getInfo(varargin) + if nargin == 1 && strcmpi(varargin{1}, 'None') + sets = {}; + pl = []; + else + sets = {'Default'}; + pl = getDefaultPlist; + end + % Build info object + ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: fngen.m,v 1.33 2011/04/08 08:56:16 hewitson Exp $', sets, pl); + ii.setModifier(false); +end + +%-------------------------------------------------------------------------- +% Get Default Plist +%-------------------------------------------------------------------------- +function plout = getDefaultPlist() + persistent pl; + if exist('pl', 'var')==0 || isempty(pl) + pl = buildplist(); + end + plout = pl; +end + +function pl = buildplist() + + pl = plist(); + + % Win + p = param({'Win', 'The spectral window to use for blending data segments.'}, paramValue.WINDOW); + pl.append(p); + + % Nsecs + p = param({'Nsecs', 'The number of seconds of data to produce.'}, paramValue.EMPTY_DOUBLE); + pl.append(p); + +end +