Mercurial > hg > ltpda
diff m-toolbox/classes/@ao/gapfilling.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/classes/@ao/gapfilling.m Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,290 @@ +% GAPFILLING fills possible gaps in data. +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% DESCRIPTION: GAPFILLING interpolated data between two data +% segments. This function might be useful for possible +% gaps or corrupted data. Two different types of +% interpolating are available: linear and spline, the latter +% results in a smoother curve between the two data segments. +% +% CALL: b = gapfilling(a1, a2, pl) +% +% INPUTS: a1 - data segment previous to the gap +% a2 - data segment posterior to the gap +% pl - parameter list +% +% OUTPUTS: b - data segment containing a1, a2 and the filled data +% segment, i.e., b=[a1 datare_filled a2]. +% +% <a href="matlab:utils.helper.displayMethodInfo('ao', 'gapfilling')">Parameters Description</a> +% +% VERSION: $Id: gapfilling.m,v 1.21 2011/11/07 15:34:34 miquel Exp $ +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +function varargout = gapfilling(varargin) + + %%% Check if this is a call for parameters + if utils.helper.isinfocall(varargin{:}) + varargout{1} = getInfo(varargin{3}); + return + end + + if nargout == 0 + error('### cat cannot be used as a modifier. Please give an output variable.'); + end + + % Collect input variable names + in_names = cell(size(varargin)); + for ii = 1:nargin,in_names{ii} = inputname(ii);end + + % Collect all AOs + [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); + pli = utils.helper.collect_objects(varargin(:), 'plist', in_names); + + pls = parse(pli, getDefaultPlist()); + + if length(as)~=2 + error('only two analysis objects are needed!') + end + + % go through each input AO + for i=1:numel(as) + % check this is a time-series object + if ~isa(as(i).data, 'tsdata') + error(' ### Gap filling requires tsdata (time-series) inputs.') + end + end + + %--- check input parameters + method = find(pls, 'method'); % method definition: linear or 'spline' + addnoise = find(pls, 'addnoise'); % decide whether add noise or not in the filled data + + %--------------------------- + % rename AOs + a1 = as(1); + a2 = as(2); + + if a1.fs ~= a2.fs + warning('Sampling frequencies of the two AOs are different. The sampling frequency of the first AO will be used to reconstruct the gap.') + end + + % Different units error + if a1.xunits ~= a2.xunits + error('!!! Data has different X units !!!'); + end + + if a1.yunits ~= a2.yunits + error('!!! Data has different Y units !!!'); + end + + a1_length = len(a1); + a2_length = len(a2); + start_a2 = a2.t0.utc_epoch_milli/1000 + a2.x(1); + end_a1 = (a1.t0.utc_epoch_milli/1000 + a1.x(1) + a1.nsecs - 1); + gaptime = (start_a2 - end_a1); + gapn = gaptime*a1.fs-1; + t = (0:1:gapn-1)'/a1.fs; + + %--- gapfilling process itself + if strcmp(method,'linear') + % linear interpolation method ---xfilled=(deltay/deltax)*t+y1(length(y1))--- + if len(a1)>10 && len(a2)>10 + dy = mean(a2.y(1:10))-mean(a1.y(a1_length-10:a1_length)); + + filling_data = (dy/gaptime)*t + mean(a1.y(a1_length-10:a1_length)); + filling_time = (1:1:gapn)'/a1.fs + a1.x(a1_length); + else + error('!!! Not enough data in the data segments (min=11 for each one for the linear method) !!!'); + end + + elseif strcmp(method,'spline') % spline method xfilled = a*T^3 + b*T^2 + c*T +d + + if len(a1)>1000 && len(a2)>1000 + + % derivatives of the input data are calculated + da1 = diff(a1.y(1:100:a1_length))*(a1.fs/100); + da1 = tsdata(da1, a1.fs/100); + da1 = ao(da1); + + da2 = diff(a2.y(1:100:a2_length))*(a2.fs/100); + da2 = tsdata(da2, a2.fs/100); + da2 = ao(da2); + + % This filters the previous derivatives + % filters parameters are obtained + plfa1 = getlpFilter(a1.fs/100); + plfa2 = getlpFilter(a2.fs/100); + + lpfa1 = miir(plfa1); + lpfpla1 = plist(param('filter', lpfa1)); + + lpfa2 = miir(plfa2); + lpfpla2 = plist(param('filter', lpfa2)); + + % derivatives are low-pass filtered + da1filtered = filtfilt(da1, lpfpla1); + da2filtered = filtfilt(da2, lpfpla2); + + % coefficients are calculated + c = mean(da1filtered.y(len(da1filtered)... + -10:len(da1filtered))); + d = mean(a1.y(len(a1)-10:len(a1))); + + a=(2*d+(c+mean(da2filtered.y(1:10)))... + *gaptime-2*mean(a2.y(1:10)))/(gaptime.^3); + + b=-(3*d+2*c*gaptime+mean(da2filtered.y(1:10))... + *gaptime-3*mean(a2.y(1:10)))/(gaptime^2); + + % filling data is calculated with the coefficients a, b, c and d + filling_data = a*t.^3+b*t.^2+c*t+d; + filling_time = (1:1:gapn)'/a1.fs + a1.x(a1_length); + else + error('!!! Not enough data in data segments (min=1001 in spline method)'); + end + + end + + % this add noise (if desired) to the filled gap + if strcmp(addnoise,'yes'); + % calculation of the standard deviation after eliminating the low-frequency component + phpf = gethpFilter(a1.fs); + ax = tsdata(a1.y, a1.fs); + ax = ao(ax); + hpf = miir(phpf); + hpfpl = plist(param('filter', hpf)); + xhpf = filter(ax, hpfpl); + hfnoise = std(xhpf); + + % noise is added to the filling data + filling_data = filling_data + randn(length(filling_data),1)*hfnoise.data.getY; + end + + % join data + filling_data = [a1.y; filling_data; a2.y]; + filling_time = [a1.x; filling_time; a2.x]; + + % create new output tsdata + ts = tsdata(filling_time, filling_data); + ts.setYunits(a1.yunits); + ts.setXunits(a1.xunits); + + % make output analysis object + b = ao(ts); + b.setT0(a1.t0) + b.name = sprintf('gapfilling(%s,%s)', ao_invars{1}, ao_invars{2}); + b.addHistory(getInfo('None'), pls, [ao_invars(1) ao_invars(2)], [as(1).hist as(2).hist]); + + % Set output + if nargout == numel(b) + % List of outputs + for ii = 1:numel(b) + varargout{ii} = b(ii); + end + else + % Single output + varargout{1} = b; + end + +end + +function plf = getlpFilter(x) + + plf = plist(); + plf = append(plf, param('gain', 1)); + plf = append(plf, param('ripple', 0.5)); + plf = append(plf, param('type', 'lowpass')); + plf = append(plf, param('order', 2)); + plf = append(plf, param('fs', x)); + plf = append(plf, param('fc', 0.1/100)); + +end + +function phf = gethpFilter(x) + + phf = plist(); + phf = append(phf, param('gain', 1)); + phf = append(phf, param('ripple', 0.5)); + phf = append(phf, param('type', 'highpass')); + phf = append(phf, param('order', 2)); + phf = append(phf, param('fs', x)); + phf = append(phf, param('fc', 0.1/100)); + +end + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% Local Functions % +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% FUNCTION: getInfo +% +% DESCRIPTION: Get Info Object +% +% HISTORY: 11-07-07 M Hewitson +% Creation. +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +function ii = getInfo(varargin) + + if nargin == 1 && strcmpi(varargin{1}, 'None') + sets = {}; + pl = []; + else + sets = {'Default'}; + pl = getDefaultPlist(); + end + % Build info object + ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: gapfilling.m,v 1.21 2011/11/07 15:34:34 miquel Exp $', sets, pl); + ii.setModifier(false); +end + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% FUNCTION: getDefaultPlist +% +% DESCRIPTION: Get Default Plist +% +% HISTORY: 11-07-07 M Hewitson +% Creation. +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +function plout = getDefaultPlist() + persistent pl; + if exist('pl', 'var')==0 || isempty(pl) + pl = buildplist(); + end + plout = pl; +end + +function pl = buildplist() + + pl = plist(); + + % Method + p = param({'method', 'The method used to interpolate data.'}, {1, {'linear', 'spline'}, paramValue.SINGLE}); + pl.append(p); + + % Add noise + p = param({'addnoise', ... + ['Noise can be added to the interpolated data.<br>'... + 'This noise is defined as random variable with<br>'... + 'zero mean and variance equal to the high-frequency<br>'... + 'noise of the first input.']}, paramValue.YES_NO); + p.val.setValIndex(2); + pl.append(p); + +end + +% PARAMETERES: 'method' - method used to interpolate data between a1 and a2. +% Two options can be used: 'linear' and 'spline'. +% Default values is 'linear'. +% 'addnoise' - noise can be added to the interpolated data. +% This noise is defined as random variable with +% zero mean and variance equal to the high-frequency +% noise if a1. 'Yes' adds noise. Default value +% is 'no'.