Mercurial > hg > ltpda
diff m-toolbox/classes/@ao/interpmissing.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/classes/@ao/interpmissing.m Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,154 @@ +% INTERPMISSING interpolate missing samples in a time-series. +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% INTERPMISSING interpolate missing samples in a time-series. Missing samples +% are identified as being those where the time-span between one +% sample and the next is larger than d/fs where d is a +% tolerance value. Missing data is then placed in the gap in +% steps of 1/fs. Obviously this is only really correct for +% evenly sampled time-series. +% +% CALL: bs = interpmissing(as) +% +% INPUTS: as - array of analysis objects +% pl - parameter list (see below) +% +% OUTPUTS: bs - array of analysis objects, one for each input +% +% +% <a href="matlab:utils.helper.displayMethodInfo('ao', 'interpmissing')">Parameters Description</a> +% +% VERSION: $Id: interpmissing.m,v 1.30 2011/04/08 08:56:16 hewitson Exp $ +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +function varargout = interpmissing(varargin) + + % Check if this is a call for parameters + if utils.helper.isinfocall(varargin{:}) + varargout{1} = getInfo(varargin{3}); + return + end + + import utils.const.* + utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); + + % Collect input variable names + in_names = cell(size(varargin)); + for ii = 1:nargin,in_names{ii} = inputname(ii);end + + % Collect all AOs and plists + [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); + [pl, pl_invars] = utils.helper.collect_objects(varargin(:), 'plist', in_names); + + % Decide on a deep copy or a modify + bs = copy(as, nargout); + + % Combine plists + pl = parse(pl, getDefaultPlist); + + + % Get tolerance + dtol = find(pl, 'd'); + + % Get only tsdata AOs + for j=1:numel(bs) + if isa(bs(j).data, 'tsdata') + + % capture input history + ih = bs(j).hist; + + % find missing samples + t = []; + d = diff(bs(j).data.getX); + idxs = find(d>dtol/bs(j).data.fs); + utils.helper.msg(msg.PROC1, 'found %d data gaps', numel(idxs)); + + % create new time grid + count = 0; + fs = bs(j).data.fs; + for k=1:numel(idxs) + idx = idxs(k); + if isempty(t) + t = bs(j).data.getX(1:idxs(1)); + end + % now add samples at 1/fs until we are within 1/fs of the next sample + gap = bs(j).data.getX(idx+1) - bs(j).data.getX(idx) - 1/fs; + tfill = [[1/fs:1/fs:gap] + bs(j).data.getX(idx)].'; + count = count + numel(tfill); + + if k==numel(idxs) + t = [t; tfill; bs(j).data.getX(idx+1:end)]; + else + t = [t; tfill; bs(j).data.getX(idx+1:idxs(k+1))]; + end + end + utils.helper.msg(msg.PROC1, 'filled with %d samples', count); + + % now interpolate onto this new time-grid + if ~isempty(t) + bs(j).interp(plist('vertices', t, 'method', find(pl, 'method'))); + bs(j).name = sprintf('interpmissing(%s)', ao_invars{j}); + % Add history + bs(j).addHistory(getInfo('None'), pl, ao_invars(j), ih); + % clear errors + bs(j).clearErrors; + else + utils.helper.msg(msg.PROC1, 'no missing samples found in %s - no action performed.', ao_invars{j}); + end + else + utils.helper.msg(msg.PROC1, 'skipping AO %s - it''s not a time-series AO.', ao_invars{j}); + end + end + + % Set output + if nargout == numel(bs) + % List of outputs + for ii = 1:numel(bs) + varargout{ii} = bs(ii); + end + else + % Single output + varargout{1} = bs; + end +end + +%-------------------------------------------------------------------------- +% Get Info Object +%-------------------------------------------------------------------------- +function ii = getInfo(varargin) + if nargin == 1 && strcmpi(varargin{1}, 'None') + sets = {}; + pl = []; + else + sets = {'Default'}; + pl = getDefaultPlist; + end + % Build info object + ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: interpmissing.m,v 1.30 2011/04/08 08:56:16 hewitson Exp $', sets, pl); +end + +%-------------------------------------------------------------------------- +% Get Default Plist +%-------------------------------------------------------------------------- +function plout = getDefaultPlist() + persistent pl; + if exist('pl', 'var')==0 || isempty(pl) + pl = buildplist(); + end + plout = pl; +end + +function pl = buildplist() + pl = plist(); + + % d + p = param({'d','The time interval tolerance for finding missing samples.'}, {1, {1.5}, paramValue.OPTIONAL}); + pl.append(p); + + % Interpolation method + pli = ao.getInfo('interp').plists; + p = pli.params(pli.getIndexForKey('method')); + pl.append(p); + +end