Mercurial > hg > ltpda
diff m-toolbox/classes/@ao/linSubtract.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/classes/@ao/linSubtract.m Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,216 @@ +% LINSUBTRACT subtracts a linear contribution from an input ao. +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% DESCRIPTION: LINSUBTRACT subtracts a linear contribution from an input ao. +% The methods assumes the input data to be synchronous. The +% user selects a filter to be applied to the data before +% fitting and a time segment where the fit is performed. +% +% CALL: c = linSubtract(a,b1,b2,b3,...,bN, pl) +% +% INPUTS: a - AO from where subtract linear contributions +% b - AOs with noise contributions +% pl - parameter list (see below) +% +% OUTPUTs: c - output AO with contributions subtracted (tsdata) +% +% <a href="matlab:utils.helper.displayMethodInfo('ao', 'linSubtract')">Parameters Description</a> +% +% EXAMPLES: +% +% 1) Given the data (d): +% +% d = a + c1*b1 + c2*(b2+b3)^2 +% +% where (bs) are noisy contributions added to a signal (a). To recover (a) +% in the [1 1e3] segment applying a [5e-2 0.1] 2nd order bandpass +% filter to the data, the call to the function would be +% +% pl = plist('type','bandpass',... +% 'fc',[5e-2 0.1],... +% 'order',2,... +% 'times',[1 1e3],... +% 'coupling',{{'n(1)'},{'(n(2) + n(3)).^2'}}); +% +% a = linSubtract(d,b1,b2,b3, pl) +% +% +% VERSION: $Id: linSubtract.m,v 1.13 2011/04/08 08:56:15 hewitson Exp $ +% +% TODO: option for parallel and serial subtraction +% handling errors +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +function varargout = linSubtract(varargin) + + % Check if this is a call for parameters + if utils.helper.isinfocall(varargin{:}) + varargout{1} = getInfo(varargin{3}); + return + end + + import utils.const.* + utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); + + % Method can not be used as a modifier + if nargout == 0 + error('### tfe cannot be used as a modifier. Please give an output variable.'); + end + + % Collect input variable names + in_names = cell(size(varargin)); + for ii = 1:nargin,in_names{ii} = inputname(ii);end + + % Collect all AOs and plists + [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); + pl = utils.helper.collect_objects(varargin(:), 'plist', in_names); + + % Decide on a deep copy or a modify + bs = copy(as, nargout); + + % Combine plists + pl = parse(pl, getDefaultPlist); + + + % get parameters + fc = find(pl,'fc'); + if isempty(fc) + error('### Please define a cut-off frequency ''fc'''); + end + times = find(pl,'times'); + cp = find(pl,'coupling'); + if isempty(cp) + error('### Please define a coupling model ''coupling''') + end + order = find(pl,'order'); + type = find(pl,'type'); + + % split in time + if ~isempty(times) + cs = split(bs,plist('times',times)); + else + cs = bs; + end + + s = cs(1); + for i = 2:length(bs) + n(i-1) = cs(i); + end + + subt = ao(); + % Loop noise sources + for i=1:length(cp) + % coupling + nterm = ao(); + if numel(cp{i}) == 1 + nterm = eval([char(cp{i}) ';']); + else + nn = numel(cp{i}); + for j =1:nn + nterm(j) = eval([char(cp{i}{j}) ';']); + end + end + % bandpass filter + fbp = miir(plist('type',type,'fc',fc,'order',order,'fs',s.fs)); + sbp = filtfilt(s,fbp); + nterm_bp = filtfilt(nterm,fbp); + % linear fit + c = lscov(nterm_bp,sbp); + sn = lincom(nterm,c); + % subtract + s = s - sn; + end + + % new tsdata + fsd = tsdata(s.x,s.y,s.fs); + % make output analysis object + cs = ao(fsd); + % set name + cs.name = sprintf('linSubtract(%s)', ao_invars{1}); + % t0 + if ~isempty(times) + cs.setT0(times(1)); + else + cs.setT0(bs(1).t0); + end + % Propagate 'plotinfo' + plotinfo = [as(:).plotinfo]; + if ~isempty(plotinfo) + cs.plotinfo = combine(plotinfo); + end + % Add history + cs.addHistory(getInfo('None'), pl, [ao_invars(:)], [bs(:).hist]); + % Set output + varargout{1} = cs; + + +end + + +%-------------------------------------------------------------------------- +% Get Info Object +%-------------------------------------------------------------------------- +function ii = getInfo(varargin) + if nargin == 1 && strcmpi(varargin{1}, 'None') + sets = {}; + pl = []; + else + sets = {'Default'}; + pl = getDefaultPlist; + end + % Build info object + ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: linSubtract.m,v 1.13 2011/04/08 08:56:15 hewitson Exp $', sets, pl); +end + + +%-------------------------------------------------------------------------- +% Get Default Plist +%-------------------------------------------------------------------------- +function plout = getDefaultPlist() + persistent pl; + if exist('pl', 'var')==0 || isempty(pl) + pl = buildplist(); + end + plout = pl; +end + +function pl = buildplist() + + pl = plist(); + + % Type + p = param({'type', 'Sets the type of filter used to fit the data.'}, {1, {'bandpass', 'bandreject', 'highpass', 'lowpass'}, paramValue.SINGLE}); + pl.append(p); + + % fc + p = param({'fc', 'Frequency cut-off of the filter.'}, paramValue.EMPTY_DOUBLE); + pl.append(p); + + % Order + p = param({'order', 'Order of the filter.'}, {1, {2}, paramValue.OPTIONAL}); + pl.append(p); + + % Times + p = param({'times', 'A set of times where the fit+subtraction is applied.'}, paramValue.EMPTY_DOUBLE); + pl.append(p); + + % Coupling + p = param({'coupling', ['A cell-array defining the model of the noise<br>'... + 'terms to be subtracted. In the cell expression<br>'... + '''s'' stands for the input ao and ''n(i)'' for the N<br>' ... + 'N noise contributions.']}, {1, {'{}'}, paramValue.OPTIONAL}); + pl.append(p); + +end +% PARAMETERS: +% 'type' - Sets the type of filter used to fit the data +% (help miir). +% 'fc' - Frequency cut-off of the filter (help miir)' +% 'order' - Order of the filter (help miir). +% 'times' - Sets split times where the subtraction applies +% (help split). +% 'coupling' - A cell-array defining the model of the noise +% terms to be subtracted. In the cell expression +% 's' stands for the input ao and 'n(i)' for the N +% N noise contributions.