Mercurial > hg > ltpda
diff m-toolbox/classes/@ao/lisovfit.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/classes/@ao/lisovfit.m Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,337 @@ +% LISOVFIT uses LISO to fit a pole/zero model to the input frequency-series. +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% DESCRIPTION: LISOVFIT uses LISO to fit a pole/zero model to the input +% frequency-series. +% +% CALL: >> pzm = lisovfit(a,pl) +% +% INPUTS: pl - a parameter list +% a - input analysis object +% +% OUTPUTS: +% pzm - the fitted pzmodel. +% +% <a href="matlab:utils.helper.displayMethodInfo('ao', 'lisovfit')">Parameters Description</a> +% +% VERSION: $Id: lisovfit.m,v 1.14 2011/04/08 08:56:14 hewitson Exp $ +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +function varargout = lisovfit(varargin) + + % Check if this is a call for parameters + if utils.helper.isinfocall(varargin{:}) + varargout{1} = getInfo(varargin{3}); + return + end + + import utils.const.* + utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); + + % Collect input variable names + in_names = cell(size(varargin)); + for ii = 1:nargin,in_names{ii} = inputname(ii);end + + % Collect all AOs and plists + [bs, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); + [pl, pl_invars] = utils.helper.collect_objects(varargin(:), 'plist', in_names); + + % combine plists + pl = parse(pl, getDefaultPlist()); + + % Extract parameters + pzm0 = find(pl, 'PZM0'); + pzml = find(pl, 'PZML'); + pzmu = find(pl, 'PZMU'); + delay = find(pl, 'delay'); + f1 = find(pl, 'f1'); + f2 = find(pl, 'f2'); + nf = find(pl, 'nf'); + method = find(pl, 'method'); + np1 = find(pl, 'np1'); + np2 = find(pl, 'np2'); + + + % Check inputs + if isempty(f1) || isempty(f2) || isempty(nf) + error('### Specify the full frequency range with f1, f2, and nf'); + end + if f1 > f2 + error('### The starting frequency should be less than the end frequency'); + end + if numel(delay) ~= 3 + error('### The delay must be specified as a 3 element numerical vector: [limit start upper]'); + end + if ~(delay(1) < delay(2)) + error('### The lower limit for the delay must be less than the starting guess.'); + end + if ~(delay(2) < delay(3)) + error('### The upper limit for the delay must be greater than the starting guess.'); + end + if numel(pzm0.poles) ~= numel(pzml.poles) + error('### The starting, lower, and upper models must have the same number of poles'); + end + if numel(pzm0.poles) ~= numel(pzmu.poles) + error('### The starting, lower, and upper models must have the same number of poles'); + end + if numel(pzm0.zeros) ~= numel(pzml.zeros) + error('### The starting, lower, and upper models must have the same number of zeros'); + end + if numel(pzm0.zeros) ~= numel(pzmu.zeros) + error('### The starting, lower, and upper models must have the same number of zeros'); + end + + % Loop over input AOs + pzms = []; + pzmls = []; + pzmus = []; + for j=1:numel(bs) + if isa(bs(j).data, 'fsdata') + % Generate temp file names + outfile = [tempname '.fil']; + datafile = [tempname '.dat']; + % Write LISO fit file + switch lower(method) + case 'fit' + if isreal(bs(j).data.getY) + writeLISOfitFile(pzm0, pzml, pzmu, delay, f1, f2, nf, outfile, datafile, false); + else + writeLISOfitFile(pzm0, pzml, pzmu, delay, f1, f2, nf, outfile, datafile, true); + end + case 'vfit' + writeLISOvfitFile(np1,np2,outfile, datafile); + otherwise + error('### method should be ''vfit'' or ''fit''.'); + end + % Export AO data file + export(bs(j), datafile); + % call fil + utils.bin.fil(outfile); + % get fitted model + pzmfit = pzmodel(outfile); + % pzmodel returns 3 models, set name for the first one + pzmfit(1).name = sprintf('fit(%s)', pzm0.name); + % Set units + [ounits, iunits] = factor(bs(j).data.yunits); + pzmfit(1).setIunits(iunits); + pzmfit(1).setOunits(ounits); + pzmfit(2).setIunits(iunits); + pzmfit(2).setOunits(ounits); + pzmfit(3).setIunits(iunits); + pzmfit(3).setOunits(ounits); + % add history + pzmfit(1).addHistory(getInfo('None'), pl, ao_invars(j), bs(j).hist); + pzmfit(2).addHistory(getInfo('None'), pl, ao_invars(j), bs(j).hist); + pzmfit(3).addHistory(getInfo('None'), pl, ao_invars(j), bs(j).hist); + % add to output + pzms = [pzms pzmfit(1)]; + pzmls = [pzmls pzmfit(2)]; + pzmus = [pzmus pzmfit(3)]; + else + error('### unknown data type.'); + end + end + + % Set outputs + if nargout == 1 + varargout{1} = pzms; + elseif nargout == 3 + varargout{1} = pzms; + varargout{2} = pzmls; + varargout{3} = pzmus; + else + error('### Incorrect number of output arguments.'); + end +end + +%---------------------------------------------------------- +% Write a liso vector fitting file +% +function writeLISOvfitFile(np1, np2, outfile, datafile) + fd = fopen(outfile, 'w+'); + + fprintf(fd, '# Temporary LISO fitting file \n'); + + % Write fit command + fprintf(fd, 'vfit %s reim rel %d %d \n', datafile,np1,np2); + fprintf(fd, '\n'); + + % Close file + fclose(fd); +end + +%---------------------------------------------------------- +% Write a liso fit file +% +function writeLISOfitFile(pzm0, pzml, pzmu, delay, f1, f2, nf, outfile, datafile, complexData) + fd = fopen(outfile, 'w+'); + + fprintf(fd, '# Temporary LISO fitting file from pzmodel: %s\n\n', pzm0.name); + + % first output poles + Np = numel(pzm0.poles); + for k=1:Np + pole = pzm0.poles(k); + lpole = pzml.poles(k); + upole = pzmu.poles(k); + fprintf(fd, '# POLE %d\n', k); + % write pole start + if isnan(pole.q) + if ~isnan(lpole.q) || ~isnan(upole.q) + error('### Poles in start, lower, and upper models must be of the same for (real, complex)'); + end + fprintf(fd, 'pole %g\n', pole.f); + else + fprintf(fd, 'pole %g %g\n', pole.f, pole.q); + end + % write param range + % param pole2:f 1.0746e-06 0.00010746 + fprintf(fd, 'param pole%d:f %g %g\n', k-1, lpole.f, upole.f); + if ~isnan(pole.q) + fprintf(fd, 'param pole%d:q %g %g\n', k-1, lpole.q, upole.q); + end + fprintf(fd, '\n'); + end + + % then output zeros + Nz = numel(pzm0.zeros); + for k=1:Nz + zero = pzm0.zeros(k); + lzero = pzml.zeros(k); + uzero = pzmu.zeros(k); + fprintf(fd, '# ZERO %d\n', k); + % write pole start + if isnan(zero.q) + if ~isnan(lzero.q) || ~isnan(uzero.q) + error('### Zeros in start, lower, and upper models must be of the same for (real, complex)'); + end + fprintf(fd, 'zero %g\n', zero.f); + else + fprintf(fd, 'zero %g %g\n', zero.f, zero.q); + end + % write param range + % param pole2:f 1.0746e-06 0.00010746 + fprintf(fd, 'param zero%d:f %g %g\n', k-1, lzero.f, uzero.f); + if ~isnan(zero.q) + fprintf(fd, 'param zero%d:q %g %g\n', k-1, lzero.q, uzero.q); + end + fprintf(fd, '\n'); + end + + % Write delay out + if ~isempty(delay) + fprintf(fd, 'delay %g\n', delay(2)); + fprintf(fd, 'param delay %g %g\n', delay(1), delay(3)); + end + fprintf(fd, '\n'); + + % Write factor + fprintf(fd, 'factor %g\n', pzm0.gain); + fprintf(fd, 'param factor %g %g\n', pzml.gain, pzmu.gain); + fprintf(fd, '\n'); + + % Write frequency command + fprintf(fd, 'freq lin %g %g %g\n', f1, f2, nf); + fprintf(fd, '\n'); + + % Write fit command + if complexData + fprintf(fd, 'fit %s reim semi\n', datafile); + else + fprintf(fd, 'fit %s abs rel\n', datafile); + end + fprintf(fd, 'rewrite samebetter\n'); + fprintf(fd, '\n'); + + % Close file + fclose(fd); +end + +%-------------------------------------------------------------------------- +% Get Info Object +%-------------------------------------------------------------------------- +function ii = getInfo(varargin) + if nargin == 1 && strcmpi(varargin{1}, 'None') + sets = {}; + pls = []; + else + sets = {'Default'}; + pls = getDefaultPlist; + end + % Build info object + ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: lisovfit.m,v 1.14 2011/04/08 08:56:14 hewitson Exp $', sets, pls); + ii.setModifier(false); +end + +%-------------------------------------------------------------------------- +% Get Default Plist +%-------------------------------------------------------------------------- +function plout = getDefaultPlist() + persistent pl; + if exist('pl', 'var')==0 || isempty(pl) + pl = buildplist(); + end + plout = pl; +end + +function pl = buildplist() + + pl = plist(); + + % PZM0 + p = param({'PZM0', 'A pzmodel describing the starting guess.'}, {1, {pzmodel}, paramValue.OPTIONAL}); + pl.append(p); + + % PZML + p = param({'PZMU', 'A pzmodel describing the upper-bound.'}, {1, {pzmodel}, paramValue.OPTIONAL}); + pl.append(p); + + % PZMU + p = param({'PZML', 'A pzmodel describing the lower-bound.'}, {1, {pzmodel}, paramValue.OPTIONAL}); + pl.append(p); + + % Delay + p = param({'Delay', 'A 3-element numeric vector describing<br>a time-delay to include in the fit.'}, {1, {[0 1 10]}, paramValue.OPTIONAL}); + pl.append(p); + + % F1 + p = param({'F1', 'A start freqeuency to fit over'}, {1, {0}, paramValue.OPTIONAL}); + pl.append(p); + + % F2 + p = param({'F2', 'The end freqeuency to fit over'}, {1, {1}, paramValue.OPTIONAL}); + pl.append(p); + + % Nf + p = param({'NF','The number of frequencies to include in the fit.'}, {1, {100}, paramValue.OPTIONAL}); + pl.append(p); + + % method + p = param({'method', 'The fitting method.'}, {1, {'fit', 'vfit'}, paramValue.SINGLE}); + pl.append(p); + + % NP1 + p = param({'NP1', 'The minimum number of poles for vfit.'}, {1, {2}, paramValue.OPTIONAL}); + pl.append(p); + + % NP2 + p = param({'NP2', 'The maximum number of poles for vfit.'}, {1, {10}, paramValue.OPTIONAL}); + pl.append(p); + + + +end + +% PARAMETERS: +% 'PZM0' - a pzmodel describing the starting guess. +% 'PZML' - a pzmodel describing the lower-bound. +% 'PZMU' - a pzmodel describing the upper-bound. +% 'DELAY' - a 3-element numeric vector describing a time-delay +% to include in the fit: [lower start upper] +% 'f1' - start freqeuency to fit over [default: taken from input AO] +% 'f2' - end freqeuency to fit over [default: taken from input AO] +% 'nf' - number of frequencies to fit [default: taken from input AO] +% 'method'- 'fit' for fitting or 'vfit' for vector fitting [default: fit] +% 'np1' - lower num. poles for vfit [default: 2] +% 'np2' - upper num. poles for vfit [default: 10]