Mercurial > hg > ltpda
diff m-toolbox/classes/@ao/lpsd.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/classes/@ao/lpsd.m Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,237 @@ +% LPSD implements the LPSD algorithm for analysis objects. +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% DESCRIPTION: LPSD implements the LPSD algorithm for analysis objects. +% +% CALL: bs = lpsd(a1,a2,a3,...,pl) +% bs = lpsd(as,pl) +% bs = as.lpsd(pl) +% +% INPUTS: aN - input analysis objects +% as - input analysis objects array +% pl - input parameter list +% +% OUTPUTS: bs - array of analysis objects, one for each input +% +% <a href="matlab:utils.helper.displayMethodInfo('ao', 'lpsd')">Parameters Description</a> +% +% VERSION: $Id: lpsd.m,v 1.55 2011/05/22 21:22:09 mauro Exp $ +% +% References: "Improved spectrum estimation from digitized time series +% on a logarithmic frequency axis", Michael Troebs, Gerhard Heinzel, +% Measurement 39 (2006) 120-129. +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +function varargout = lpsd(varargin) + + % Check if this is a call for parameters + if utils.helper.isinfocall(varargin{:}) + varargout{1} = getInfo(varargin{3}); + return + end + + import utils.const.* + utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); + + % Collect input variable names + in_names = cell(size(varargin)); + for ii = 1:nargin,in_names{ii} = inputname(ii);end + + % Collect all AOs + [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); + + % Decide on a deep copy or a modify + bs = copy(as, nargout); + + % Apply defaults to plist + pl = applyDefaults(getDefaultPlist, varargin{:}); + + inhists = []; + + % Loop over input AOs + for jj = 1 : numel(bs) + % gather the input history objects + inhists = [inhists bs(jj).hist]; + + % check this is a time-series object + if ~isa(bs(jj).data, 'tsdata') + warning('!!! lpsd requires tsdata (time-series) inputs. Skipping AO %s', ao_invars{jj}); + else + + % Check the time range. + time_range = mfind(pl, 'split', 'times'); + if ~isempty(time_range) + switch class(time_range) + case 'double' + bs(jj) = split(bs(jj), plist(... + 'times', time_range)); + case 'timespan' + bs(jj) = split(bs(jj), plist(... + 'timespan', time_range)); + case 'time' + bs(jj) = split(bs(jj), plist(... + 'start_time', time_range(1), ... + 'end_time', time_range(2))); + case 'cell' + bs(jj) = split(bs(jj), plist(... + 'start_time', time_range{1}, ... + 'end_time', time_range{2})); + otherwise + end + end + + % Check the length of the object + if bs(jj).len <= 0 + error('### The object is empty! Please revise your settings ...'); + end + + pl = utils.helper.process_spectral_options(pl, 'log'); + + % Desired number of averages + Kdes = find(pl, 'Kdes'); + % num desired spectral frequencies + Jdes = find(pl, 'Jdes'); + % Minimum segment length + Lmin = find(pl, 'Lmin'); + % Window function + Win = find(pl, 'Win'); + % Overlap + Nolap = find(pl, 'Olap')/100; + % Order of detrending + Order = find(pl, 'Order'); + + % Get frequency vector + [f, r, m, L, K] = ao.ltf_plan(length(bs(jj).data.y), bs(jj).data.fs, Nolap, 1, Lmin, Jdes, Kdes); + + % compute LPSD + try + if find(pl, 'M-FILE ONLY') + % Using pure m-file version + [P, Pxx, ENBW] = ao.mlpsd_m(bs(jj).data.y, f, r, m, L, bs(jj).data.fs, Win, Order, Nolap); + else + [P, Pxx, dev, devxx, ENBW] = ao.mlpsd_mex(bs(jj).data.y, f, r, m, L, bs(jj).data.fs, Win, Order, Nolap*100, Lmin); + end + catch ME + warning('!!! mex file dft failed. Using m-file version of lpsd.'); + % Using pure m-file version + [P, Pxx, ENBW] = ao.mlpsd_m(bs(jj).data.y, f, r, m, L, bs(jj).data.fs, Win, Order, Nolap); + end + + % Keep the data shape of the input AO + if size(bs(jj).data.y,1) == 1 + P = P.'; + Pxx = Pxx.'; + dev = dev.'; + devxx = devxx.'; + f = f.'; + end + + % create new output fsdata + scale = find(pl, 'Scale'); + switch lower(scale) + case 'as' + fsd = fsdata(f, sqrt(P), bs(jj).data.fs); + fsd.setYunits(bs(jj).data.yunits); + std = sqrt(dev); + case 'asd' + fsd = fsdata(f, sqrt(Pxx), bs(jj).data.fs); + fsd.setYunits(bs(jj).data.yunits / unit('Hz^0.5')); + std = sqrt(devxx); + case 'ps' + fsd = fsdata(f, P, bs(jj).data.fs); + fsd.setYunits(bs(jj).data.yunits.^2); + std = dev; + case 'psd' + fsd = fsdata(f, Pxx, bs(jj).data.fs); + fsd.setYunits(bs(jj).data.yunits.^2/unit('Hz')); + std = devxx; + otherwise + error(['### Unknown scaling:' scale]); + end + fsd.setXunits('Hz'); + fsd.setEnbw(ENBW); + fsd.setT0(bs(jj).data.t0); + % make output analysis object + bs(jj).data = fsd; + % set name + bs(jj).name = sprintf('L%s(%s)', upper(scale), ao_invars{jj}); + % Add processing info + bs(jj).procinfo = plist('r', r, 'm', m, 'l', L, 'k', K); + % Add standard deviation + bs(jj).data.dy = std; + % Add history + bs(jj).addHistory(getInfo('None'), pl, ao_invars(jj), inhists(jj)); + + end % End tsdata if/else + end % loop over analysis objects + + % Set output + varargout = utils.helper.setoutputs(nargout, bs); +end + +%-------------------------------------------------------------------------- +% Get Info Object +%-------------------------------------------------------------------------- +function ii = getInfo(varargin) + if nargin == 1 && strcmpi(varargin{1}, 'None') + sets = {}; + pl = []; + else + sets = {'Default'}; + pl = getDefaultPlist(); + end + % Build info object + ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: lpsd.m,v 1.55 2011/05/22 21:22:09 mauro Exp $', sets, pl); +end + +%-------------------------------------------------------------------------- +% Get Default Plist +%-------------------------------------------------------------------------- +function plout = getDefaultPlist() + persistent pl; + if ~exist('pl', 'var') || isempty(pl) + pl = buildplist(); + end + plout = pl; +end + +function pl = buildplist() + + % General plist for Welch-based, log-scale spaced spectral estimators + pl = plist.LPSD_PLIST; + + % Scale + p = param({'Scale',['The scaling of output. Choose from:<ul>', ... + '<li>PSD - Power Spectral Density</li>', ... + '<li>ASD - Amplitude (linear) Spectral Density</li>', ... + '<li>PS - Power Spectrum</li>', ... + '<li>AS - Amplitude (linear) Spectrum</li></ul>']}, {1, {'PSD', 'ASD', 'PS', 'AS'}, paramValue.SINGLE}); + pl.append(p); + +end + +% PARAMETERS: +% +% 'Kdes' - desired number of averages to perform [default: 100] +% 'Jdes' - number of spectral frequencies to compute [default: 1000] +% 'Lmin' - minimum segment length [default: 0] +% 'Win' - the window to be applied to the data to remove the +% discontinuities at edges of segments. [default: taken from +% user prefs] +% Only the design parameters of the window object are +% used. Enter either: +% - a specwin window object OR +% - a string value containing the window name +% e.g., plist('Win', 'Kaiser', 'psll', 200) +% 'Olap' - segment percent overlap [default: -1, (taken from window function)] +% 'Scale' - scaling of output. Choose from: +% PSD - Power Spectral Density [default] +% ASD - Amplitude (linear) Spectral Density +% PS - Power Spectrum +% AS - Amplitude (linear) Spectrum +% 'Order' - order of segment detrending +% -1 - no detrending +% 0 - subtract mean [default] +% 1 - subtract linear fit +% N - subtract fit of polynomial, order N