Mercurial > hg > ltpda
diff m-toolbox/classes/@ao/normdist.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/classes/@ao/normdist.m Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,148 @@ +% NORMDIST computes the equivalent normal distribution for the data. +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% DESCRIPTION: NORMDIST computes the equivalent normal distribution for the +% data. The mean and standard deviation are computed from the +% data. The method returns the normal distribution evaluated +% at the bin centers. +% +% CALL: b = normdist(a) +% b = normdist(a, pl) +% +% INPUTS: a - input analysis object(s) +% pl - a parameter list +% +% OUTPUTS: b - xydata type analysis object(s) containing the +% normal distribution pdf +% +% <a href="matlab:utils.helper.displayMethodInfo('ao', 'normdist')">Parameters Description</a> +% +% VERSION: $Id: normdist.m,v 1.11 2011/04/08 08:56:13 hewitson Exp $ +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +function varargout = normdist(varargin) + + % Check if this is a call for parameters + if utils.helper.isinfocall(varargin{:}) + varargout{1} = getInfo(varargin{3}); + return + end + + import utils.const.* + utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); + + % Collect input variable names + in_names = cell(size(varargin)); + for ii = 1:nargin,in_names{ii} = inputname(ii);end + + % Collect all AOs and plists + [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); + [pli, pl_invars, rest] = utils.helper.collect_objects(varargin(:), 'plist', in_names); + + pl = parse(pli, getDefaultPlist('Number of bins')); + normalize = utils.prog.yes2true(find(pl, 'norm')); + + % start looping + bs(numel(as),1) = ao(); + + for jj=1:numel(bs) + + % compute histogram to get bin centers. + h = hist(as(jj), pl); + % compute mean and standard deviation from the data + mu = mean(as(jj).y); + sig = std(as(jj).y); + % Compute exponent + e = ((h.x-mu)./sig).^2; + % compute PDF + y = (exp(-0.5.*e))./(sig*sqrt(2*pi)); + % Introduce normalization + if normalize + yunits = (as(jj).data.yunits)^(-1); + else + nn = sum(y); + nd = sum(h.y); + y = y.*nd./nn; + yunits = 'Count'; + end + % construct new AO + % make a new xydata object + xy = xydata(h.x, y); + xy.setXunits(as(jj).data.yunits); + xy.setYunits(yunits); + bs(jj) = ao(xy); + bs(jj).procinfo = plist('mu', mu, 'sig', sig); + % name for this object + bs(jj).name = sprintf('normdist(%s)', ao_invars{jj}); + % Add history + bs(jj).addHistory(getInfo('None'), pl, ao_invars(jj), bs(jj).hist); + end + + % Set output + if nargout == numel(bs) + % List of outputs + for ii = 1:numel(bs) + varargout{ii} = bs(ii); + end + else + % Single output + varargout{1} = bs; + end +end + +%-------------------------------------------------------------------------- +% Get Info Object +%-------------------------------------------------------------------------- +function ii = getInfo(varargin) + if nargin == 1 && strcmpi(varargin{1}, 'None') + sets = {}; + pls = []; + elseif nargin == 1 && ~isempty(varargin{1}) && ischar(varargin{1}) + sets{1} = varargin{1}; + pls = getDefaultPlist(sets{1}); + else + sets = {'Number Of Bins'}; + pls = []; + for kk=1:numel(sets) + pls = [pls getDefaultPlist(sets{kk})]; + end + end + % Build info object + ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: normdist.m,v 1.11 2011/04/08 08:56:13 hewitson Exp $', sets, pls); +end + +%-------------------------------------------------------------------------- +% Get Default Plist +%-------------------------------------------------------------------------- +function plout = getDefaultPlist(set) + persistent pl; + persistent lastset; + if exist('pl', 'var')==0 || isempty(pl) || ~strcmp(lastset, set) + pl = buildplist(set); + lastset = set; + end + plout = pl; +end + +function plo = buildplist(set) + switch lower(set) + case 'number of bins' + plo = plist(); + + % N number of bins + p = param({'N', ['The number of bins to compute the histogram on. <br>' ... + 'This defines the bin centers for the PDF.']}, {1, {10}, paramValue.OPTIONAL}); + plo.append(p); + + % normalized output + p = param({'norm', ['Normalized output. If set to true, it will give the normal distrubution PDF. <br>' ... + 'Otherwise, it will give an output comparable to the ao/hist method']}, paramValue.TRUE_FALSE); + p.val.setValIndex(2); + plo.append(p); + + otherwise + error('### Unknown default plist for the set [%s]', set); + end +end + +