Mercurial > hg > ltpda
diff m-toolbox/classes/@ao/polyfit.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/classes/@ao/polyfit.m Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,191 @@ +% POLYFIT overloads polyfit() function of MATLAB for Analysis Objects. +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% DESCRIPTION: POLYFIT overloads polyfit() function of MATLAB for Analysis +% Objects. It finds the coefficients of a polynomial P(X) of +% degree N that fits the data Y best in a least-squares sense: +% P(1)*X^N + P(2)*X^(N-1) +...+ P(N)*X + P(N+1) +% +% CALL: bs = polyfit(a1, a2, a3, ..., pl) +% bs = polyfit(as,pl) +% bs = as.polyfit(pl) +% +% INPUTS: aN - input analysis objects with data to be fitted. +% X will be a.x +% Y will be a.y +% as - input analysis objects array +% pl - input parameter list +% +% OUTPUTs: bs - An array of pest objects, each with the N+1 fitting coefficients P(j) +% +% <a href="matlab:utils.helper.displayMethodInfo('ao', 'polyfit')">Parameters Description</a> +% +% VERSION: $Id: polyfit.m,v 1.48 2011/05/12 03:37:08 mauro Exp $ +% +% EXAMPLES: +% +% %% Make fake AO from polyval +% nsecs = 100; +% fs = 10; +% +% u = unit('fm s^-2'); +% +% pl = plist('nsecs', nsecs, 'fs', fs, ... +% 'tsfcn', 'polyval([3 2 1 ], t) + 1000*randn(size(t))', ... +% 'xunits', 's', 'yunits', u); +% +% a1 = ao(pl); +% +% %% Fit a polynomial +% N = 3; +% p1 = polyfit(a1, plist('N', N)); +% p2 = polyfit(a1, plist('N', N, 'rescale', true)); +% +% %% Compute fit: evaluating pest +% %% Here we need to specify that we want to use the 'x' field of +% %% the AO a to build the output AO +% +% b1 = p1.eval(plist('type', 'tsdata', 'XData', a1, 'Xfield', 'x')); +% b2 = p2.eval(a1, plist('type', 'tsdata', 'Xfield', 'x')); +% +% %% Plot fit +% iplot(a1, b1, plist('LineStyles', {'', '--'})); +% +% %% Remove polynomial +% c = a1-b1; +% iplot(c) +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +function varargout = polyfit(varargin) + + % Check if this is a call for parameters + if utils.helper.isinfocall(varargin{:}) + varargout{1} = getInfo(varargin{3}); + return + end + + import utils.const.* + utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); + + % Collect input variable names + in_names = cell(size(varargin)); + for ii = 1:nargin,in_names{ii} = inputname(ii);end + + % Collect all AOs and plists + [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); + pl = utils.helper.collect_objects(varargin(:), 'plist', in_names); + + if nargout == 0 + error('### polyfit can not be used as a modifier method. Please give at least one output'); + end + + % Combine plists + use_pl = parse(pl, getDefaultPlist); + + % Degree of polynomial to fit + N = find(use_pl, 'N'); + + % Center and rescale the data + rescale = utils.prog.yes2true(find(use_pl, 'rescale')); + + % Loop over input AOs + for jj = 1 : numel(as) + + if isa(as(jj).data, 'cdata') + warning('!!! Can''t fit to cdata objects. Skipping AO %s', ao_invars{jj}); + bs = []; + else + % Fit polynomial + mu = []; + if rescale + [p,s,mu] = polyfit(as(jj).x, as(jj).y, N); + else + [p,s] = polyfit(as(jj).x, as(jj).y, N); + end + + % prepare models, units, names + model = []; + for kk = 1:N+1 + names{kk} = ['P' num2str(kk)]; + units{kk} = as(jj).yunits ./ ((as(jj).xunits).^(N-kk+1)); + if kk == 1 + model = [model 'P' num2str(kk) '*X.^' num2str(N-kk+1)]; + else + model = [model ' + P' num2str(kk) '*X.^' num2str(N-kk+1)]; + end + end + model = smodel(plist('expression', model, ... + 'params', names, ... + 'values', p, ... + 'xvar', 'X', ... + 'xunits', as(jj).xunits, ... + 'yunits', as(jj).yunits ... + )); + + % Build new pest objects from these N+1 coefficients + bs(jj) = pest; + bs(jj).setY(p); + bs(jj).setDof(s.df); + bs(jj).setNames(names{:}); + bs(jj).setYunits(units); + bs(jj).setModels(model); + bs(jj).name = sprintf('polyfit(%s)', ao_invars{jj}); + bs(jj).addHistory(getInfo('None'), use_pl, ao_invars(jj), as(jj).hist); + % Set procinfo object with some data + bs(jj).procinfo = plist('S', s, 'mu', mu); + + end + + end + + % Set output + varargout = utils.helper.setoutputs(nargout, bs); + +end + +%-------------------------------------------------------------------------- +% Get Info Object +%-------------------------------------------------------------------------- +function ii = getInfo(varargin) + if nargin == 1 && strcmpi(varargin{1}, 'None') + sets = {}; + pl = []; + else + sets = {'Default'}; + pl = getDefaultPlist(); + end + % Build info object + ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: polyfit.m,v 1.48 2011/05/12 03:37:08 mauro Exp $', sets, pl); + ii.setModifier(false); + ii.setArgsmin(1); +end + +%-------------------------------------------------------------------------- +% Get Default Plist +%-------------------------------------------------------------------------- +function plout = getDefaultPlist() + persistent pl; + if ~exist('pl', 'var') || isempty(pl) + pl = buildplist(); + end + plout = pl; +end + +function pl = buildplist() + pl = plist(); + + % N + p = param({'N','Degree of polynomial to fit.'}, {2, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, paramValue.SINGLE}); + pl.append(p); + + % Rescale + p = param({'rescale',['set to ''true'' or ''false'' to center and ', ... + 'rescale the data before fitting.<br>', ... + 'See "help polyfit" for further details.']}, paramValue.FALSE_TRUE); + pl.append(p); + +end + +% END +