Mercurial > hg > ltpda
diff m-toolbox/classes/@ao/smoother.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/classes/@ao/smoother.m Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,164 @@ +% SMOOTHER smooths a given series of data points using the specified method. +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% DESCRIPTION: SMOOTHER smooths a given series of data points using +% the specified method. +% +% CALL: b = smoother(a, pl) +% +% <a href="matlab:utils.helper.displayMethodInfo('ao', 'smoother')">Parameters Description</a> +% +% VERSION: $Id: smoother.m,v 1.30 2011/11/11 15:21:19 luigi Exp $ +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +function varargout = smoother(varargin) + + callerIsMethod = utils.helper.callerIsMethod; + + % Check if this is a call for parameters + if utils.helper.isinfocall(varargin{:}) + varargout{1} = getInfo(varargin{3}); + return + end + + import utils.const.* + utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); + + % Collect input variable names + in_names = cell(size(varargin)); + for ii = 1:nargin,in_names{ii} = inputname(ii);end + + % Collect all AOs and plists + [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); + [pl, pl_invars] = utils.helper.collect_objects(varargin(:), 'plist', in_names); + + % Decide on a deep copy or a modify + bs = copy(as, nargout); + + % combine plists + pl = parse(pl, getDefaultPlist()); + + % Get parameters from plist + bw = find(pl, 'width'); + hc = find(pl, 'hc'); + method = find(pl, 'method'); + + % check the method + if ~strcmp(method, 'median') && ... + ~strcmp(method, 'mean') && ... + ~strcmp(method, 'min') && ... + ~strcmp(method, 'max') && ... + ~strcmp(method, 'mode') + help(mfilename) + error('### Unknown smoothing method'); + end + + % Loop over input AOs + for j=1:numel(bs) + utils.helper.msg(msg.PROC1, 'smoothing %s', bs(j).name); + switch lower(method) + case {'median', 'mean', 'min', 'max'} + bs(j).data.setY(ltpda_smoother(bs(j).data.getY, bw, hc, method)); + otherwise + bs(j).data.setY(smooth(bs(j).data.getY, bw, hc, method)); + end + % set name + bs(j).name = sprintf('smoother(%s)', ao_invars{j}); + % Add history + if ~callerIsMethod + bs(j).addHistory(getInfo('None'), pl, ao_invars(j), bs(j).hist); + end + end + + % clear errors + bs.clearErrors; + + % Set output + if nargout == numel(bs) + % List of outputs + for ii = 1:numel(bs) + varargout{ii} = bs(ii); + end + else + % Single output + varargout{1} = bs; + end +end + +%-------------------------------------------------------------------------- +% Get Info Object +%-------------------------------------------------------------------------- +function ii = getInfo(varargin) + if nargin == 1 && strcmpi(varargin{1}, 'None') + sets = {}; + pl = []; + else + sets = {'Default'}; + pl = getDefaultPlist; + end + % Build info object + ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: smoother.m,v 1.30 2011/11/11 15:21:19 luigi Exp $', sets, pl); +end + + +%-------------------------------------------------------------------------- +% smooth data +function ys = smooth(y, bw, hc, method) + N = length(y); + ys = zeros(size(y)); + + % function to smooth with + mfcn = eval(['@(x) ' method '(x)' ]); + + for kk=1:N + if mod(kk, 1000)==0 + utils.helper.msg(utils.const.msg.PROC1, 'smoothed %06d samples', kk); + end + % Determine the interval we are looking in + interval = kk-bw/2:kk+bw/2; + interval(interval<=0)=1; + interval(interval>N)=N; + % calculate method(values) of interval + % after throwing away outliers + trial = sort(y(interval)); + b = round(hc*length(trial)); + ys(kk) = mfcn(trial(1:b)); + end +end + +%-------------------------------------------------------------------------- +% Get Default Plist +%-------------------------------------------------------------------------- +function plout = getDefaultPlist() + persistent pl; + if exist('pl', 'var')==0 || isempty(pl) + pl = buildplist(); + end + plout = pl; +end + +function pl = buildplist() + pl = plist(); + + % width + p = param({'width', 'The width of the smoothing filter.'}, paramValue.DOUBLE_VALUE(20)); + pl.append(p); + + % hc + p = param({'hc', 'A cutoff to throw away outliers (0-1).'}, paramValue.DOUBLE_VALUE(0.8)); + pl.append(p); + + % Method + p = param({'method', 'The smoothing method.'}, {1, {'median', 'mean', 'max', 'mode'}, paramValue.SINGLE}); + pl.append(p); + +end +% END + +% PARAMETERS: width - the width of the smoothing filter [default: 20 samples] +% hc - a cutoff to throw away outliers (0-1) [default: 0.8] +% method - the smoothing method: +% 'median' [default] +% 'mean', 'min', 'max', 'mode' +%